
WHITEPA PER

From Hardware Concept
to Zephyr Bring Up—
The Road to Using a
Crossover MCU with Zephyr
Eli Hughes, NXP Pro Support Engineer

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 2

Contents
1. Synopsis .. 3

2. “Crossing Over” with i.MX RT685 .. 4
The i.MX RT685 General Purpose CPU Platform ..4

The PowerQuad Co-Processor ..5

CASPER ...5

Cadence Tensilica® HiFi 4 DSP ...6

i.MX RT685 Memory Architecture ..6

Inter-processor Communications and Synchronization ...8

i.MX RT685 Audio Peripherals...8

General Purpose Connectivity and Timers ...9

I3C ...10

3. The Minimal Configuration i.MX RT685 Hardware Project.

Codename “Super-Monkey” .. 11
i.MX RT685 PCB Layout Consideration: The VFBGA176 Package...12

i.MX RT685 Power ...14

Understanding the i.MX RT685 Power Supply Strategy ..15

+1.8v “Always-On” and Analog Functions ..15

User IO ...15

Power Management Options for the i.MX RT685 ..16

i.MX RT685 Flash Memory Interface ..17

FlexSPI Flash Controller ...17

QSPI on FlexSPI Port A Configuration and Boot ...18

Boot Configuration ...19

Programming and Debug ..19

ISP Serial Boot Support Software ...20

i.MX RT685 Debug ..22

Realizing the Super Monkey Hardware ...23

SuperMonkey Board Build ..25

Bare Metal Bring Up with QSPI Flash ...26

The i.MX RT685 Boot Header ..27

MCUXpresso IDE + MCU-Link ..29

Programming and Debug with Segger J-Link + Segger Ozone ...29

4. Zephyr RTOS Bringup on the i.MX RT685 SuperMonkey.. 31
A bit about Zephyr boards ..31

Getting Setup for Custom Board Development ...32

Seeding your custom board using the RT685 EVK ...33

Notable Customizations for the SuperMonkey ..34

Board Device Tree Overlay ..35

Final Results ... 38

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 3

1. Synopsis

The intent of this article is to illustrate a hardware design that uses a “crossover”
microcontroller (MCU) and the steps needed to bring-up Zephyr RTOS on the custom
hardware. I purposely chose a specialized component that represents a slightly more
challenging design task. I thought it would be instructive to show a path going from concept
to hardware design through booting the RTOS. I do want to point out that this article will
dive deep into both hardware and software as a system; when stakeholders have their feet
planted on both sides of the hardware/software fence, a team can often do more with less.
In all successful projects, understanding the design choices context is key to success.

Over the course of my career, I have had the privilege to observe the complexity of
microcontrollers grow orders of magnitude. It certainly has been a wild ride since I was
first experimenting with a 6502 as the number of peripherals, memories, and additional
co-processing functions now integrated is mindblowing. Managing complexity in a design,
both in the hardware and firmware domains, is paramount to “getting things done”. Simply
coming up with a way to manage your build system and the software components can be
a full-time job as you start dealing with more complicated devices. With the introduction
of “Crossover MCUs” such as the i.MX RT family from NXP, the demarcation between MCU,
Digital Signal Processor (DSP) and application processor is no longer clear, and managing
system complexity can be an overwhelming task with the amount of resources in a device.

There are applications where one may desire to directly program specialized hardware
elements in an MCU to achieve maximum performance and flexibility. However, having
tools for the common/general-purpose functions can really assist with managing the overall
system complexity, and will pay dividends. I have always used my hometown street layout
as a useful analogy when considering software tools. With a small population of 1000
people, a single stop sign in the center of town can be sufficient for managing traffic flow.
However, as population increases by orders of magnitude to 10k or 100k citizens, it would
be unwise to not have systems in place to manage the traffic.

Likewise, when engineering any complex microcontroller system, an RTOS can be your
“traffic lights” and “highways” to ensure the overall system behaves well as you add
complexity. Even if you don’t use the RTOS for everything in the system, it can be very
helpful with managing general-purpose functions so you can focus on the specialized
components. One aspect of the Zephyr RTOS that I find helpful is that you can use as little
or as much of the ecosystem as you like. I have found that this aspect gives me a great deal
of flexibility when I am actively figuring out how to manage system complexity as I can laser
focus on the pieces that are most important.

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 4

2. “Crossing Over” with i.MX RT685

To set the stage, I want to spend some time
examining an interesting device that represents the
quintessential blurring of MCU, DSP and applications
processor. I will spend some time pointing out
some interesting aspects of this device as there
are elements that are new in the microcontroller
realm. There is quite a bit of detail here, but I want
to make a case that this new class of MCUs demand
consideration when planning the management of
your software system complexity.

It was October of 2017 when the concept of the
“Crossover” MCU was first introduced with the NXP
i.MX RT1050. For a microcontroller & DSP enthusiast
such as myself, the concept of a high clock rate MCU
that could tackle problems previously relegated
to application processors was very intriguing. I
generally approach problems from the perspective
of “simplicity”. For many real-world processing
challenges, microcontrollers can be the simplest
solution. There are applications however that
demand more real-time processing capability on
continuous streams of data. Whether it be high
channel count audio, or complicated sensor fusion,
there are situations where you need more than
what a traditional microcontroller can offer. In some
cases, one may choose to go down the path of an
applications processor, but this approach is not
always optimal when low latency, real-time response
is a critical requirement.

The typical method to approach this problem was to
use a “Digital Signal Processor” (DSP). DSPs generally
have an internal processing pipeline highly tuned
to real-time sample by sample data processing.
DSPs are great solutions, but you often must give
up many of the general-purpose features found in a
microcontroller. I encounter this scenario quite often
and it is not uncommon to pair a general-purpose

microcontroller with a dedicated DSP in an application
architecture to get the best of both worlds. My
first experience with a DSP architecture was with
the Motorola 56K series. It was a powerful tool for
crunching numbers, but I found that most of my
designs with a DSP also required a general-purpose
microcontroller for the traditional IO and connectivity.

This is where the i.MX RT685 steps in. The i.MX
RT685 crossover MCU is a newer member of the
i.MX crossover family focused on real-time number
crunching applications such as audio, sensor fusion
and machine learning.

FIGURE 1. THE i.MX RT685.

The i.MX RT685 addresses the audio and sensor
fusion challenge by integrating a high-performance
300MHz general purpose microcontroller with a
powerful 600MHz DSP processor, a large 4.5MB SRAM
bank and a plethora of traditional peripherals & IO.

The i.MX RT685 General Purpose
CPU Platform
The CPU platform in the i.MX RT685 is based upon
the Arm® Cortex®-M33 core (CM33). By itself, the
CM33 is capable of sophisticated audio applications.
The CM33 is built on the Armv8-M architecture
which includes Single Instruction on Multiple

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt600-crossover-mcu-with-arm-cortex-m33-and-dsp-cores:i.MX-RT600

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 5

Data (SIMD) as well as Multiply and Accumulate
(MAC) instructions. There is quite a bit that could be
accomplished with CM33 running at 300MHz before
even considering the additional DSP core. Last year,
I wrote quite a bit about the LPC5500 series MCUs
focusing on the LPC55S69 and its ample processing
capabilities. The LPC55S69 is also based upon the
CM33 core (running at 150MHz vs 300MHz). I think
of the i.MX RT685 as a serious upgrade to the LPC55
when you need more of everything.

FIGURE 2. THE i.MX RT685 GENERAL PURPOSE CPU PLATFORM.

One feature of the CM33 is a coprocessor interface
which can be accessed with special assembly
language instructions. There are two “co-processors”
attached to the CM33 in the i.MX RT685: The
PowerQuad (labeled as the DSP Accelerator) and the
CASPER (labeled as the Crypto Engine).

The PowerQuad Co-Processor
The PowerQuad is a dedicated hardware unit that
runs in parallel to the CM33 core inside the i.MX
RT685. By using the PowerQuad to work in parallel to
the CM33, it is possible to implement sophisticated
signal processing algorithms while leaving your gen-
eral purpose CM33 core available to do other tasks
such as communication and IO.

FIGURE 3. THE i.MX RT685 POWERQUAD CO-PROCESSOR.

For the LPC55S69 release, I wrote four articles on the
PowerQuad and detailed some of its use cases:

 ⊲ PowerQuad Part 1 – Industrial IOT, OFDM
Communications and Smart Metering

 ⊲ PowerQuad Part 2 – Digital IIR Filtering

 ⊲ PowerQuad Part 3 – Fast Fourier Transforms

 ⊲ PowerQuad Part 4 – Matrix and Vector Processing

The key takeaway here is that before we have even
considered the additional DSP core, the i.MX RT685
offers a powerful hardware co-processor that can do
very useful operations “out of the box”. We can be
crunching Fast Fourier Transforms (FFTs) at a high
rate before even tapping into any of the resources of
the DSP or CM33 cores!

CASPER
CASPER is an accelerator attached to the CM33 copro-
cessor interface that is optimized for cryptographic
computations. At its core, CASPER is a dual multi-
ply-accumulate-shift engine that can operate on large
blocks of data. Applications of CASPER include acceler-
ating cryptographic functions such as public key verifi-
cation (e.g., TLS/SSL) and computing HMAC signatures.
Once again, before we have even considered using
the Tensilica© HiFi4 DSP in the i.MX RT685, there is

https://community.nxp.com/t5/Blogs/LPC5500-MCU-Series-There-s-a-lot-under-the-hood-Part-1-of-3/ba-p/1131125
https://community.nxp.com/t5/Blogs/LPC5500-MCU-Series-There-s-a-lot-under-the-hood-Part-1-of-3/ba-p/1131125
https://community.nxp.com/t5/Blogs/LPC5500-MCU-Series-There-s-a-lot-under-the-hood-Part-1-of-3/ba-p/1131125
https://community.nxp.com/t5/Blogs/LPC5500-MCU-Series-There-s-a-lot-under-the-hood-Part-1-of-3/ba-p/1131125
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set/coprocessor-instructions/mrrc-and-mrrc2?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set/coprocessor-instructions/mrrc-and-mrrc2?lang=en
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/high-efficiency-arm-cortex-m33-based-microcontroller-family:LPC55S6x
https://community.nxp.com/t5/Blogs/LPC55S69-PowerQuad-Part-1-A-Great-Solution-for-the-Industrial/ba-p/1131115
https://community.nxp.com/t5/Blogs/LPC55S69-PowerQuad-Part-1-A-Great-Solution-for-the-Industrial/ba-p/1131115
https://community.nxp.com/t5/Blogs/LPC55S69-PowerQuad-Part-2-Digital-IIR-Filtering/ba-p/1131184
https://community.nxp.com/t5/Blogs/LPC55S69-PowerQuad-Part-3-Fast-Fourier-Transforms-Rulers-Guages/ba-p/1131201
https://community.nxp.com/t5/Blogs/LPC55S69-PowerQuad-Part-4-Matrix-and-Vector-Processing/ba-p/1131130

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 6

another accelerator in the i.MX RT685 that can off-
load complicated operations. Many connected prod-
ucts require multiple cryptographic operations and
CASPER is a great way of implementing the functions
without taxing your other processing pipelines. There
are plenty of examples included in the MCUXpresso
SDK for utilizing the CASPER accelerator. This feature
makes the i.MX RT685 well suited to IOT applications.

FIGURE 4. THE i.MX RT685 CASPER CRYPTOGRAPHIC
ACCELERATOR.

Cadence Tensilica® HiFi 4 DSP
What makes the i.MX RT685 really interesting is the
inclusion of a Cadence Tensilica® HiFi4 DSP core. I
previously mentioned that it is certainly possible to
implement DSP in the general purpose CM33. There
are situations however where a dedicated DSP pro-
cessing pipeline is needed to achieve a required
throughput. One of the limitations of the Cortex™-M
core is that several cycles can be used just initializing
registers before utilizing the SIMD/DSP instructions. In
many cases, the SIMD/MAC instructions can execute
in a single cycle, but several CPU cycles are required
for general purpose registers loaded with input data.
Dedicated DSP processors are optimized to allow for
continuous processing of single cycle MAC operations

using features such as circular indexed memory
modes and zero overhead loops. The HiFi4 DSP sup-
ports four 32x32-bit MACs and the ability to issue two
64-bit loads per cycle. There is a vector floating point
unit providing up to four single-precision IEEE floating
point MACs per cycle. All HiFi4 operations can be used
as intrinsics in standard C code.

FIGURE 5. CADENCE TENSILICA® HIFI 4 DSP IN THE i.MX RT685.

The HiFi4 Audio DSP was designed specifically for
audio and sensor fusion processing pipelines. It is
supported with a large 3rd party ecosystem that
covers applications such as sensor fusion, real-time
audio, noise reduction, sound enhancement and
voice processing. There are more than 300 DSP
software packages already ported and optimized
for the HiFi4 DSP architecture. This means you can
get up and running very quickly, and can easily port
your own proprietary software, completely in C, while
also maintaining or surpassing the performance of
assembly on other DSPs. Cadence even offers an
optimized version of TensorFlow Lite to enable
machine learning and AI applications at the edge.

i.MX RT685 Memory Architecture
Another unique aspect of the i.MX RT685 is its large
memory availability and architecture. An important
component of an audio processing architecture is the
availability of large blocks of memory for time/sample
history buffers and fast memories for critical code
execution.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro/kernels
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro/kernels
https://www.tensorflow.org/lite

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 7

FIGURE 6. i.MX RT685 INTERNAL MEMORY.

The availability of 4.5MB of internal SRAM immediately
should catch your attention! I tend to think in terms of
real-time audio applications for musical performance.
4.5MB of RAM allows for deep buffers to implement
delay-based effects including loopers and large time
constant reverbs. A 4.5MB pool of fast SRAM removes
the need for slower external SDRAM (which is
common in many audio DSP architectures). The 4.5MB
is shared between the CM33 and the HiFi4 DSP. The
memory is sufficiently partitioned to allow for a large
amount of flexibility in the processing architecture.
There are 30 partitions across 9 AHB ports. This
means the processing system can be designed to
minimize contention between the CPUs and RAM
allowing for maximum throughput.

The HiFi4 DSP has dedicated local Tightly Coupled
Memories (TCMs) for data and code. Each TCM is
64 KB accessed by a 128-bit port. The code and
data TCMs can be accessed by the Cortex-M33 and
by the DMA controllers through a slave port on the
AHB matrix. These connections allow the CM33 to
bootstrap the HiFi4 with executable code. In addition
to the TCMs, there is a dedicated 4-way data cache of
64 KB with 256 bytes per line and a dedicated 4-way

instruction cache of 32 KB with 256 bytes per line. The
local HiFi4 memory architecture enables the highest
level of processing capability as the DSP engine can
access code and data with minimal bottle neck.

FIGURE 7. HIFI4 LOCAL MEMORY ARCHITECTURE.

Like many of the other i.MX RT crossover parts, the
i.MX RT685 is a flash-less component. This allows
the i.MX RT685 to be efficiently built on 28nm
FD-SOI semiconductor process technology taking
advantage of power consumption savings and clock
frequency improvements. Code can be stored in
low-cost external Quad/Octo SPI NOR Flash memory.
Non-time-critical routines can execute in place
from external memory while code requiring better
performance can execute from internal SRAM. This
approach gives architecture maximum flexibility in
balancing cost and performance. It was almost 10
years ago when the NXP LPC4357 was introduced
with a QSPI XIP flash interface. The XIP external flash
approach has proven to be an effective way to lower
the total cost of a solution that can provide large
amounts of flash for applications as well as offering
flexibility when architecting the MCU solution.

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 8

Inter-processor Communications
and Synchronization
Since there are multiple CPU cores in the i.MX RT685,
it is important to have hardware support for Inter-
Processor Communication (IPC). The i.MX RT685
includes a Messaging Unit (MU) which provides a
hardware-based IPC mechanism. While it is possible
to set up shared memory between the CM33 and
the Hifi4 DSP, the MU offers a way to efficiently send
messages/notifications between the processors with
interrupt support. The MU is an important component
to allow one CPU to wake up another when using
power-down modes.

FIGURE 8. THE i.MX RT685 MESSAGING UNIT.

In addition to the MU, the i.MX RT685 includes
a hardware enforced semaphore function. Both
the CM33 and Hifi4 DSP have access to internal
peripherals and memories. It is important to have
mechanisms in place to ensure appropriate mutual
exclusion. The semaphore unit implements 16
hardware enforced “gates”. A processor must write
a special sequence to gain access to a hardware
gate and to release its lock. The gates are generic in
nature and can be used as needed by the software
architecture to implement mutual exclusion on both
peripherals and memory. Hardware support in the
i.MX RT685 for IPC and semaphores make multicore
processing simpler to architecture and implement.

i.MX RT685 Audio Peripherals
Processing audio streams is a key feature of the i.MX
RT685. A proper audio “Crossover Processor” would
not be complete without hardware peripheral sup-
port for common audio IO interfaces. The bread and
butter of digital audio is the I2S protocol. I2S is the
gateway into a large ecosystem of high-quality exter-
nal data converters, sample rate converters and audio
transmitters (AES3/SPDIF). The i.MX RT685 includes
eight multi-function “Flexcomm” serial peripherals.
Flexcomm peripheral channels are reconfigurable for
all the common serial protocols including USART, SPI,
and I2S. Each of the Flexcomm interfaces support four
I2S channel pairs for a potential of 32 channel pairs
available to the system. All the common digital audio
modes are supported in the Flexcomm I2S periph-
eral including Left justified, Right Justified and TDM
(Time Division Multiplexing) modes. The Flexcomm
I2S peripheral includes an eight entry FIFO to ensure
glitch-less audio streams.

For voice applications, the i.MX RT685 contains a
flexible Digital Microphone (DMIC) subsystem. DMICs
most commonly use Pulse Density Modulation
PDM to encode audio data. A DMIC has no analog
output, data is output digitally synchronous to a
clock. The clock is supplied by the DMIC subsystem,
and its frequency is at a binary multiple (e.g., 64x)
of the audio sample rate. DMICs are an extremely
popular replacement to older electret microphone
technologies as they are small, can be built on a
repeatable semiconductor process and have a direct
digital interface. As an example, Knowles Acoustics
manufactures DMICs for applications including voice
and ultrasonic sensing.

https://en.wikipedia.org/wiki/I²S
https://en.wikipedia.org/wiki/Pulse-density_modulation
https://en.wikipedia.org/wiki/Pulse-density_modulation
https://www.knowles.com/subdepartment/dpt-microphones/subdpt-sisonic-surface-mount-mems

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 9

FIGURE 9. KNOWLES ACOUSTIC DIGITAL MICROPHONES.

PDM data streams require a digital filter and
decimation to recover the audio waveform. The
DMIC subsystem in the i.MX RT685 has the necessary
hardware to directly connect and decode PDM data
streams. Up to eight microphones are supported with
flexibility over decimation and sample rate control.
Processing an acoustic array of microphones is now
much simpler with the i.MX RT685!

Also included in the DMIC subsystem is a hardware
voice activity detector (HWVAD). The HWVAD is a
dynamic envelope detector that can be used to
trigger /wakeup processing functions when activity is
detected in a digital audio stream.

FIGURE 10: i.MX RT685 HARDWARE BASED VOICE ACTIVITY DETECTOR.

One last important component that I want to
mention (that is important to audio applications)
is a dedicated Phased Locked Loop (PLL). Audio IO
protocols require a dedicated master clock that is
at some binary multiple of the target sample rate.
When using common audio sample rates such as
44.1KHz or 48KHz, the master clock may not easily

be derived from an internal MCU clock source. For
example, it is common to observe a 12.288MHz or
24.576MHz master lock when working with 48KHz
audio streams. The i.MX RT685 includes a dedicated
PLL for audio applications.

FIGURE 11. i.MX RT685 AUDIO PLL.

General Purpose Connectivity and Timers
With all the dedicated hardware for audio and sensor
fusion workloads, there is still a great deal of support
in the i.MX RT685 for general purpose connectivity,
timing, and analog integration.

FIGURE 12. i.MX RT685 CONNECTIVITY, TIMERS AND
ANALOG INTEGRATION.

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 10

The i.MX RT685 has all the standard connectivity
support you would expect including two SD/eMMC
interfaces and high-speed USB. One aspect of NXP
microcontrollers that I love are the plethora of timers!
Two of my favorites being the State Configurable
Timer (SCT) and the Multi-Rate Timer (MRT). I have
previously written about interesting applications such
as ultrasonic pulse pattern generation with the SCT
and Modbus communication with an RS485 enabled
UART and the MRT. The built-in analog system
includes a 1MSPS ADC and analog comparator which
can allow the i.MX RT685 to be used into interesting
industrial applications that require sensor fusion.

I3C
One last unique feature that I want to point out in
the i.MX RT685 is the addition of a MIPI® I3C inter-
face. I3C is a super set of the classic I2C bus. I3C was
developed by the MIPI alliance to provide an upgrade
to the I2C for mid-speed applications. It is positioned
as an alternative to SPI while keeping a simple two
wire interface between devices on a PCB. It is widely
expected that I3C will be a standard interface on
many new sensors and peripheral components. Some
notable features:

 ⊲ Up to 12MHz clock rate. SDA and SCL lines use both
open-drain and push-pull modes to increase data
rate and allow bi-directional communications

 ⊲ “In Band Interrupts”. A peripheral can interrupt a
controller over the bus without extra pins.

 ⊲ Multi-Controller/Multi-Drop

 ⊲ Double data rate modes that offer transfer speed
on parity with classic SPI

 ⊲ Hot Joins. Nodes can join the bus at any time.
Nodes get notifications when a new device joins
the bus.

 ⊲ Backwards compatibility with I2C.

 ⊲ Dynamic Addressing

 ⊲ In-Band Common Command Codes to standardize
behaviors.

I3C is looking very cool and offers a unique blend of
I2C and SPI capabilities. Be sure to get informed on
I3C as you will see a lot more of it in years to come.

I hope this overview of the i.MX RT685 was able to get
you interested in the crossover processor concept and
its unique capabilities. My background in acoustics,
audio and sensor fusion always steer my interests
to parts with a diverse mix of capabilities. From my
perspective, it is one of the most interesting MCU
platforms currently available. I was only able to hit on
the highlights and I hope you can find you way to the
i.MX RT685 website to learn more.

https://community.nxp.com/t5/Blogs/LPC5500-MCU-Series-There-s-a-lot-under-the-hood-Part-3-of-3-SCT/ba-p/1131147
https://community.nxp.com/t5/Blogs/Industrial-Modbus-Communication-with-the-LPC55S06-Baseline-MCU/ba-p/1253182
https://community.nxp.com/t5/Blogs/Industrial-Modbus-Communication-with-the-LPC55S06-Baseline-MCU/ba-p/1253182
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt600-crossover-mcu-with-arm-cortex-m33-and-dsp-cores:i.MX-RT600

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 11

3. The Minimal Configuration i.MX RT685 Hardware Project.
Codename “Super-Monkey”

When starting a new design, the most prudent path
is to purchase an EVK for a new MCU. Zephyr has
support for the i.MX RT685 EVK in the mainline repos-
itory. Since the i.MX RT685 is more complicated than
most microcontrollers, I did want to show a custom
design that deviated from the EVK. This design serves
as an example of the steps needed to get Zephyr run-
ning on a custom board. The i.MX RT685 requires a bit
more care and feeding to get a project up and running
and I thought it would be good to have an example
available for others to use. The part is offered in a
0.5mm pitch VFBGA176 so I also thought it would be
good to show a minimal configuration example that
can be built with low-cost PCB technologies.

I find this step to be a very useful exercise as high-
end MCU’s can be overwhelming, especially to those
coming from a traditional MCU background. The goal
here is to develop a simple “minimal configuration”
example and build it for a demonstration. There are
resources available to helping you design with the
i.MX RT685 such as the “Hardware Development
Guide for the RT685 Processor” (RT685HDUG) and the
MIMXRT685-EVK. These resources can help bootstrap
your next design. My personal view is that having
several different design perspectives is always benefi-
cial. Between the existing reference material and this
article there should be enough information to start
your next i.MX RT685 design with confidence.

In 2020, I did similar project codenamed “Mini-
Monkey” using the LPC55S69 in its VFBGA98 package.
It was an exercise to illustrate a simple project using
the 0.5mm VFBGA98 package on a low cost 2-layer
PCB process. That hardware project demonstrated
the LPC55S69 being able to do things like microphone
capture, visualization and animated GIF decoding.

The i.MX RT685 is definitely a “step up” from the
LPC55S69 and is well suited to high end audio appli-
cations. Between the 300MHz CM33, the PowerQuad
coprocessor and the 600MHz tensilica HIFI4 DSP,
there is quite a bit of horsepower for your application!
It was obvious to me that the i.MX RT685 could be a
great fit for all my future real-time DSP audio process-
ing projects. In 2011, I built the “Active Pickguard”
demonstrating what could be accomplished with the
Kinetis K20 (Cortex-M4) device.

10 years later there have been some serious advances
in embedded technologies. Rev 2 of the Active pick-
guard has been in the back of my mind for a while
now and the i.MX RT685 is a potential great fit!

To run some experiments with the i.MX RT685 in-situ,
I want to design a small module that bootstraps the
i.MX RT685 with everything I need for my high-end
audio applications. Since I may go through several
iterations, I thought a simple module (like the Mini-
Monkey) would be a good start point. To get the proj-
ect “out the door”, it is important to set clear bound-
aries at the outset. I do not need the module to bring
out all the features of the i.MX RT685. The initial goal
is to get the most critical IO to get my audio projects
moving. Iteration is very important in the engineering
process so I thought I would keep it simple to keep
momentum going.

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://community.nxp.com/t5/Blogs/quot-Mini-Monkey-quot-Part-1-How-to-design-with-the-LPC55S69-in/ba-p/1131175
https://community.nxp.com/t5/Blogs/quot-Mini-Monkey-quot-Part-1-How-to-design-with-the-LPC55S69-in/ba-p/1131175
https://community.nxp.com/t5/Blogs/LPC55S69-Embedded-Graphics-Using-LVGL-to-build-a-VU-Meter/ba-p/1179826
https://community.nxp.com/t5/Blogs/LPC55S69-Embedded-Graphics-Using-LVGL-to-build-a-VU-Meter/ba-p/1179826
https://community.nxp.com/t5/Blogs/LPC55S69-PowerQuad-Part-1-A-Great-Solution-for-the-Industrial/ba-p/1131115
https://community.nxp.com/t5/Blogs/LPC55S69-Embedded-Graphics-Decoding-Animated-GIFs/ba-p/1130869
https://community.nxp.com/t5/Blogs/quot-Crossing-Over-quot-with-the-i-MX-RT600-Part-1-of-2/ba-p/1274087
https://www.youtube.com/watch?v=XhSo-udHuqM
https://resources.altium.com/p/mini-monkey-board-using-lpc55s69-vfbga98-package
https://resources.altium.com/p/mini-monkey-board-using-lpc55s69-vfbga98-package

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 12

Since the .MX RT685 is a significant step up in
performance from the LPC55S69 base Mini-Monkey,
I thought the codename “Super-Monkey” would
be a good fit. It leaves me with options for future
projects (hint hint!). Ultra-Monkey, Mega-Monkey,
Nano-Monkey….

My Initial Specs for the i.MX RT685
Super-Monkey Module:

 ⊲ IO breakout for 8 digital microphones (DMICs)

 ⊲ One TDM input for up to 8-channel audio in (one
flexcomm channel)

 ⊲ Two separate I2S audio output channels. One will
be for outputting audio and the other will be a spe-
cial monitor (two flexcomm channels)

 ⊲ I3C Access. This is a new feature I have been want-
ing to experiment with

 ⊲ Solder pads to add an optional TFT display.

 ⊲ SWD debug access

 ⊲ USB connector for ISP boot and power

 ⊲ A debug UART

 ⊲ A handful of GPIO

 ⊲ +5v power via USB or IO pins

 ⊲ On board Flash (the i.MX RT685 is a flash-less part)

 ⊲ Crystal/clock management

i.MX RT685 PCB Layout Consideration:
The VFBGA176 Package

The first order of business when I approach a new
hardware design is to understand the device package
and any implications of the pin geometries. For
the Super-Monkey project, I will be designing with
the MIMXRT685SFVKB which uses the VFBGA176
package. The VFBGA176 is a 9mm x 9mm ball grid
array (BGA) with 0.5mm pitch. A fine pitch BGA
package can be intimidating, especially for those who
may only have experience with microcontrollers in
QFP packages. One of the reasons I built the “Mini-
Monkey” was to demonstrate that the LPC55S69
VFBGA98 package option was doable with a 2-Layer
process and low-cost design rules. The VFBGA176
was designed to be easy to fanout and is routable
with a practical 4-layer process.

FIGURE 13. THE VFBGA176 PACKAGE.

https://www.buydisplay.com/240x240-round-ips-tft-lcd-display-1-28-inch-capactive-touch-circle-screen
https://www.nxp.com/docs/en/package-information/98ASA00942D.pdf
https://resources.altium.com/p/mini-monkey-board-using-lpc55s69-vfbga98-package
https://resources.altium.com/p/mini-monkey-board-using-lpc55s69-vfbga98-package

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 13

I enjoy studying unique BGA ball arrangements.
This package is a work of art. Notice that there are
several regions left unpopulated making it simpler to
fan out. In many cases, a 0.5mm BGA requires a filled
micro via-in-pad to fanout the IO. There was quite a
bit of thought put into the pinout of the i.MX RT685
and it is possible to fan this device out without via-in-
pad technology. Many of the balls on the interior are
VSS connections. Using the MCUXpresso IDE pin tool,
one can highlight pins and get a rough sense of the
layout strategy.

FIGURE 14. SIGNAL HIGHLIGHTING WITH THE MCUXPRESSO IDE
PIN TOOL

I spent some time analyzing the Gerber files from
i.MX RT685EVK to get a feel for the layout. The fanout
of this package is very practical.

FIGURE 15. i.MX RT685 VFBGA176 FANOUT

Notice that all the signal pads can be fanned out
on the top layer. The via connections (red dots) are
to connect to the power & return planes on inner
layers. The vias are placed in the depopulated ball
regions. The IO fanout on the RT685EVK uses 3mil
width/ 3mil space geometry. The vias under the device
package use 6mil drills. These geometries are a bit
tighter than what is typically required by traditional
microcontrollers, but it is well within the capabilities of
many PCB fab houses.

Since the only vias used in the fanout are for
power and returns, there is plenty of space to place
decoupling capacitors on the opposite side of the PCB.
Figure 16 illustrates the placement of the decoupling
caps on the RT685EVK. They are nearby existing vias
to direct feed the power planes.

FIGURE 16. RT686 VFBGA176 DECOUPLING CAPACITOR STRATEGY

Many 0.5mm pitch BGAs require via-in-pad technology
along with blind/buried stack-ups so the fanout
vias do not interfere with the decoupling capacitors
on the opposite side of the PCB. In the case of the
VFBGA176, we can use lower cost processes as we
do not need via-in-pad technology or a blind/buried
stackup. Fanout and decoupling capacitor placement
is straightforward for the i.MX RT685 VFBGA176
package. I really like to understand package geometry
before I start a design as it can directly influence other
decisions down the pipeline. The time spent analyzing

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 14

the Gerbers on the RT685EVK was well spent as I now
have confidence the fanout of the part will not require
any exotic PCB process technology.

i.MX RT685 Power
Once I study the packaging for a new MCU, the next
order of business is to understand the power supply
architecture. MCU power supply design is intertwined
with PCB layout strategy, so it is a good idea to under-
stand both early in the design process.

The i.MX RT685 crossover MCU power/performance
ratio sits at an intersection of traditional MCUs, dedi-
cated DSPs and application processors. To get signifi-
cant clock rate improvements over traditional MCUs,
the i.MX RT685 was built on 28nm FD-SOI process
technology. Using 28nm process technology for an
MCU is a new concept that NXP has helped pioneer.

FIGURE 17. 28NM FD-SOI PROCESS TECHNOLOGY.

If you remember your electrical engineering course-
work, all the major characteristics of a MOSFET are
controlled by geometry. FD-SOI process technology
has many advantages, one being that we can bias the
body of the MOSFETs dynamically. Body biasing gives
us real-time programmatic control over the MOSFET
threshold voltage VTH. For MCU applications, we can

move VTH up or down allowing one to increase clock
frequency/performance or reduce dynamic power
consumption.

From the perspective of production yield and a
desire for increased CPU clock rates, the geometries
of the transistors need to be pushed to their design
rule minimums. A byproduct of small transistor
geometries is a numerically small value for MOSFET
VDS. For 28nm FD-SOI process technology, the
nominal MOSFET VDS has been characterized to 1.0v
nominal. This means the “core” logic power must be
derived from a 1.0v supply.

Why are many MCUs powered at +3.3v?

Even though 28nm FD-SOI is 1.0v nominal, one can
imagine the maximum allowed VDS to also scale up
with geometry. You might not be aware, but many
+3.3v MCUs might still have cores that need +1.2v,
1.8v or 2.5v core power because of the underlying
process technology. The MCU will usually incorpo-
rate an LDO that the end user may not be aware of.
Sometimes this internal LDO is documented in the
device datasheet, but it might not always be the case.

As the core voltage requirements are pushed lower,
the internal LDO approach can get more inefficient
resulting in additional power dissipation in the IC
package. The core logic is one of the largest consum-
ers of dynamic power resulting from all the MOSFETS
switching at a high clock frequency. As the core logic
voltage requirement drops, it is important to have
direct access to the core power domain to directly
supply power from a switching DC-DC converter.
As an example, the NXP LPC55S69 is built on 40nm
process technology and uses a 1.2v core. It integrates
its own switching DC-DC converter to minimize active
power dissipation.

https://www.coventor.com/blog/everything-you-need-to-know-about-fdsoi-technology-advantages-disadvantages-and-applications-of-fdsoi/
https://www.coventor.com/blog/everything-you-need-to-know-about-fdsoi-technology-advantages-disadvantages-and-applications-of-fdsoi/

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 15

Understanding the i.MX RT685
Power Supply Strategy
The i.MX RT685 has three general power domains:

 ⊲ +1.0v Core

 ⊲ +1.8V for “Always-On” and Analog Functions

 ⊲ +1.71 to +3.6v capable IO (which can be further
divided into 3 distinct groups)

i.MX RT685 Core Power

VDDCORE is used to power the internal CPU(s) and
core logic. To maximize clock rate, the CPUs and core
logic are constructed from the smallest transistors
allowed by the process technology design rules. In
the case of the i.MX RT685 and 28nm FD-SOI, the core
voltage is nominally 1.0v. Looking at the i.MX RT685
datasheet, the maximum allowed value does not give
one much room for error in your power supply!

It is possible to operate the core power at values
lower than 1.0v as to save power when using lower
clock frequencies. NXP provides a power library
which can tune the body bias to achieve low power
consumption figures at lower clock rates.

The take-away here is that by providing a separate
core power supply access, the designer has flexibility
in how to optimize for a particular use case. It is
important to note that the i.MX RT685 includes an
LDO that can be powered from a +1.8v rail. Use of the
LDO is not required but is available if the efficiency of
a switching power supply is not required.

+1.8v “Always-On” and Analog Functions
There are several 1.8V rails in the i.MX RT685 that may
be combined if needed. One of these 1.8v rails is the
“always-on” power domain. This domain is used for
features that must be active in power down states
such as the RTC, reset, optional LDO and PMIC con-
trol. In addition to the +1.8v “always-on” domain, there
are +1.8v rails for other analog functions such as the
ADC and comparator. +1.8v power is required for the
i.MX RT685 in a minimal configuration scenario.

User IO
Lastly, the IO pins can be powered separately from
the +1.8v functions and the core. The IO supply range

is +1.71 to +3.6v with +3.3v
being the most common. There
are other circumstances how-
ever when you may want certain
IO pins to use +1.8v. For exam-
ple, many high-speed double
data rate quad/octo NOR flash
devices operate with a +1.8v
power supply. The i.MX RT685
has 3 separate IO banks so you
can have a mix of IO voltages.
In a minimal configuration
scenario, it would be possible
to power all the IO from +1.8v
reducing the number of DC-DC
converters needed in a system.
However, it is most likely one
will require some IO at +3.3v.

FIGURE 18.
i.MX RT685
VDD CORE

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 16

FIGURE 19. i.MX RT685 POWER DOMAIN PIN ASSIGNMENTS

It is important to understand all the IO power options
at the outset of a design. It is easy to make a mistake
and end up with a non-functional part design. For
my own designs, I take extra steps in the schematic
entry stage to ensure success. I like to break up the
schematic symbol for a part based upon a particular
voltage domain. This makes design reviews much
simpler as it is easier to spot a mistake. For example,
reset in the i.MX RT685 is in the +1.8v “always-on”
domain. Make sure it is clearly marked so you do not
pull it to +3.3v!

FIGURE 20. i.MX RT685 IO SCHEMATIC BLOCKS

Power Management Options
for the i.MX RT685
The power architecture for the i.MX RT685 is more
complicated than a traditional single voltage rail
MCU because of its flexibility. However, once you
understand the architecture, the application design is
straightforward. For example, in a minimal configura-
tion that requires +3.3v IO, one could power the i.MX
RT685 with +3.3v and +1.8v using the internal LDO for
the core.

NXP offers an integrated solution that makes
powering the i.MX RT685 much simpler: the PC4390
Power Management Integrated Circuit (PMIC). A PMIC
is essentially a handful of DC-DC converters, LDOs and
control circuitry integrated into a single package.

FIGURE 21. THE PCA9420 PMIC

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 17

In the case of the PCA9420, it has been specifically
designed to power the i.MX RT685. The out of the
box configuration will perform all the necessary
sequencing to bring up the device correctly. It is
packaged in a 24-pin QFN package which is extremely
compact given the number of functions it is providing.
The PCA9420 also provides reset control and has an
I2C interface that allows the supplies to be tuned for
the different clocking configurations.

FIGURE 22: i.MX RT685 DEDICATED PMIC INTERFACE

I highly recommend using the PCA9420, especially if
this is the first design iteration using the i.MX RT685. A
designer is certainly free to use other power manage-
ment solutions but the PCA9420 is a path to ensure
success. If your application requires any power man-
agement and sleep functions, then the PCA9420 is an
optimum choice. The Super-Monkey design will be
using the PCA9420 to simplify the power supply. I plan
on using the PCA9420 on the Super-Monkey as the
module will be powered with a single +5v rail.

i.MX RT685 Flash Memory Interface
When starting with a new MCU, I almost always
examine power architecture and device packaging as
the topics are often interwoven. Once I have a good
idea of how to properly power a part and understand
what the PCB layout will look like, the next order of
business is understanding boot-up and debugging.

Like power & package, boot & debug are also often
interconnected. It is important to consider both topics
simultaneously. The i.MX RT685 series have additional
design considerations as they are flash-less MCUs as
the designer must add a flash memory external to the
part. The flash-less MCU paradigm allows for flexibility
in your design but can be challenging if it is your first
experience with a flash-less MCU.

For the Super-Monkey project, I am electing to use a
simple external memory configuration with common
QSPI NOR flash. In my use case, time-critical DSP
algorithms will execute from fast internal RAM. Boot
functions and non-critical code can live in the external
QSPI flash. I feel this is a good tradeoff for cost,
storage capacity and performance. QSPI is now well
established in the marketplace and NXP was the 1st to
offer execute in place (XIP) technology over a quad SPI
bus (QSPI or SPIFI). This technology was introduced
over 10 years ago with the LPC18xx and LPC43xx
microcontrollers. Since then, QSPI XIP has proven
to be a very good choice for many applications. It is
very common for real-time audio/DSP code to have
a reasonably small footprint and it can execute from
the fastest internal/tightly coupled memories. Most
other system code requirements are well served by
XIP from external QSPI (serial communications, USB,
system tasks, etc.). It is important to note that the
memory controller in the i.MX RT685 has 32KB of
cache. A little bit of cache on XIP QSPI memory can go
a long way to improve performance.

FlexSPI Flash Controller
Built into the i.MX RT685 is a special flash interface
controller called “FlexSPI”. FlexSPI supports access to
Single/Dual/Quad/Octal flash interfaces through the
internal AHB bus. This means the CPU can access SPI
memory as if it were a normal memory mapped flash
device. The details of the SPI transactions are han-
dled by the FlexSPI controller. FlexSPI enables a wide
array of memories to be connected to the MCU. With

https://www.nxp.com/products/power-management/pmics-and-sbcs/pmics/pmic-for-low-power-applications:PCA9420

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 18

FlexSPI, designers have access to extremely dense
flash memories and can use new flash devices as they
become available. Designs can be easily scaled to
storage requirements as needed. SPI memories are
also easy to route on a PCB as there are fewer con-
nections. Chapter 33 of UM11147 details the FlexSPI
controller and possible use cases.

FIGURE 23. NXP FLEXSPI MEMORY CONTROLLER.

The FlexSPI controller has two ports which can be
further subdivided into two separate interfaces
allowing a maximum of 4 QSPI devices if needed. To
support future designs, the controller implements a
look up table (LUT) that allows command sequences
to be altered. It is also important to note that in
addition to flash, there are now SPI based (p)SRAM
devices in the marketplace allowing for volatile
memory to be added as well.

QSPI on FlexSPI Port A Configuration
and Boot
The MIMXRT685-EVK demonstrates use of the FlexSPI
peripheral with two devices attached. One being a
high-speed octal pSRAM connected to port A and
an octal flash connected to port B. Note the “octal”
interface. FlexSPI supports up to 8-bit transactions on
a Double Data Rate (DDR) interface. Octal devices are
still quite new as compared to quad devices but offer
a significant performance increase (4x between the
increased data path and DDR interface). I also want
to note something important about the FlexSPI on
the i.MX RT685. There are two ports, but Port A can

support higher speed transfer through the use of an
additional DQS pin. In the case of the RT685EVK, the
pSRAM is wired to the higher speed port. I do have
to chuckle a bit when the terms “SPI” and “Octal” are
combined. These memory interfaces are now syn-
chronously clocked parallel buses. QSPI was a simple
extension to traditional 1 bit SPI but has now grown
from the simple “serial” use case. For the Super-
Monkey, I want to demonstrate a simplified scenario.

There is one other detail important to the i.MX RT685
with regards to the FlexSPI connections:

If you want to use all 8 channels of the DMIC
interface, FlexSPI B will not be available. You must
connect to FlexSPI A.

Figure 23 shows how to connect a QSPI flash to the
i.MX RT685.

FIGURE 24. QSPI FLASH CONNECTION ON THE i.MX RT685.

As you can see, QSPI memory is simple to connect. I
am using a +1.8v flash device. Typically, I arrange my
schematic symbols to be group functions by power
domain to reduce the chance of error. In this case,
VDDIO_0 will be powered by +1.8v from the PMIC.
I left the connections to DMICs highlighted so you
can see the intersection with FlexSPI B. MCUXpresso
IDE includes a pin tool that allows you to plan the
device muxing/pinout to reveal any potential conflicts.

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 19

With every new hardware design, I create a skeleton
MCUXpresso SDK software project that gets included
in my hardware design git repository. The skeleton
project’s sole purpose is to define all of my IO as I am
working through the hardware design.

Boot Configuration
Once the flash memory is connected, there are two
questions I always ask. How does the CPU know to
boot from this external flash and how do I program
the flash? The i.MX RT685 series shares a legacy with
the LPC family of microcontrollers in that there are a
few “ISP” pins which control the boot process. These
pins are sampled at power up by routines located in
ROM. One of the features in the LPC family of micro-
controllers are ROM boot functions/utilities that enable
programming over a few different serial interfaces. The
i.MX RT685 continues this tradition. Like its LPC prede-
cessors, boot configuration is simple to set up.

FIGURE 25. SELECTING FLEXSPI PORT A ON THE ISP BOOT PINS.

For the Super-Monkey module, I elected to use three
switches to control the boot pins. Note that the ISP
lines are in the +1.8v power domain. Setting the
switches appropriately will allow FlexSPI port A to be
used by the boot ROM.

FIGURE 26. i.MX RT685 ISP PIN CONNECTIONS

The i.MX RT685 user manual (Chapter 41) documents
how the boot process functions in detail.

Programming and Debug
An important mode of the ROM bootloader in the i.MX
RT685 is called “Serial ISP” which enables a PC/host
to perform flash operations (and program OTP fuses)
via interfaces such as UART or USB. It is important
to *always* allow this mode to be available in your
designs. It will save a great deal of time and headache
down the road.

https://mcuxpresso.nxp.com/en/welcome

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 20

FIGURE 27. SERIAL ISP BOOT MODE.

Serial ISP can be your “escape hatch” when you are
having issues or need a production programming/
configuration interface. At minimum, you should
always provide access to the UART lines on Flexcomm
0 (PIO0_1 / PIO0_2).

FIGURE 28. SERIAL ISP UART PINS

I cannot stress how important it is to have access
to these pins! In addition to the UART, I would also
recommend having USB access as well. The ROM
bootloader enumerates a USB-HID device for access
to the programming/test functions. There are minimal
parts required to enable the USB interface. I always
add some EMI filtering to the +5v VBUS line as well as
some ESD protection to the D+/D- lines.

FIGURE 29. i.MX RT685 MINIMAL USB CONNECTIONS.

I do want to point out the minimal clocking
configuration required by the ROM bootloader. A
24MHz crystal is required for correct USB operation.

FIGURE 30. i.MX RT685 MINIMAL CRYSTAL/CLOCK CONFIGURATION.

I am not using the RTC and elected to not connect a
32KHz crystal. For the minimal configuration scenario,
a 24MHz crystal is the path to quick success.

ISP Serial Boot Support Software
There are a couple of useful software tools to drive
the serial ISP boot functions. The first is a command
line application “blhost”. The i.MX RT685 reference
manual has some examples of the different uses of
blhost (see chapter 41). blhost can program externally
connected flash, discover timing parameters, and
program internal OTP fuses. It is a Swiss Army Knife
that is very useful for testing, debugging and deploy-
ing your design.

“blhost” is one component in a larger suite of tools
found in the NXP Secure Provisioning SDK.

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 21

FIGURE 31. BLHOST IN THE CONTEXT OF THE NXP SECURE
PROVISIONING SDK.

The NXP Secure Provisioning SDK is open source and
can be found at https://github.com/NXPmicro/spsdk.

In addition to blhost, the MCUXpresso Secure
Provisioning Tool can also be used to program
images over the ISP interface. The MCUXpresso
Secure Provisioning Tool provides an easy-to-use GUI
for preparing bootable encrypted images and burn-
ing OTP fuses over the ISP interface. The GUI is built
upon the tools in the NXP Secure Provisioning SDK. I
find quite a bit of utility in the GUI tools as having a
visual interface to the flash memory and OTP fuses
can reduce mistakes. While you can always reprogram
flash memory, a mistaken setting in the OTP fuses can
be frustrating.

FIGURE 32. MCUXPRESSO SECURE PROVISIONING TOOL - OTP
FUSE GUI

The 2nd tool can be found in the open-source
community.

An alternative to the NXP supported tools for ISP
operations is the “MCUBootUtility” which can be
found in the open-source community.

MCUBootUtility is a python-based GUI that wraps
blhost to perform all of the most common operations.
It supports the i.MX RT685 parts as well as all the
other parts in the i.MX RT crossover family.

https://github.com/NXPmicro/spsdk
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://github.com/JayHeng/NXP-MCUBootUtility
https://github.com/JayHeng/NXP-MCUBootUtility
https://github.com/JayHeng/NXP-MCUBootUtility

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 22

FIGURE 33. OPEN SOURCE MCU BOOT UTILITY

MCUBootUtility and the NXP Secure Provisioning SDK
(which contains blhost) are both available as open
source. One of the primary differences between the
tools is that the Secure Provisioning SDK is officially
supported by NXP. MCUBootUtility is supported by its
author on GitHub.

i.MX RT685 Debug
The last piece we need to look at is debug access. The
i.MX RT685 implements a standard ARM SWD inter-
face. On my 1st design iteration with a new MCU, I
always add the standard .050” ARM header for debug.
The only connections needed for a minimal configura-
tion are SWDCLK and SWDIO. Keep in mind that SWD
trace IO are also available on the i.MX RT685, but I am
choosing to use the simplest configuration. The only
extra feature I added was Serial Wire Output (SWO).
Once in a while, I will turn it on for streaming addi-
tional data through the debugger. However, I found
that simple SWD is often good enough. I prefer to use
Segger’s J-Link and their Ozone debugger “but the
MCUXpresso IDE can use low-cost debugger” should
probably be “but the MCUXpresso IDE can be used
with a low cost-debugger such as the MCU-Link. There
is quite a bit you can get done with simple 2-wire SWD
and the available tools.

FIGURE 34. i.MX RT685 DEBUG CONNECTIONS

In additional to the standard 0.050” debug header, I
always add Tag-Connect pads for debug access. As
the design progressed closer to the production build,
the standard header can be added to the do not
place list and the if debug as needed.

FIGURE 35. TAG-CONNECT SWD CABLE

It should also be noted that the reset signal from
the debug header may need a level translator. The
reset connection from the PMIC to the i.MX RT685
is in the always on +1.8v power domain. IO Bank 1
in the Super-Monkey will be tied to a +3.3v rail. A
simple solution is to use a simple open-drain buffer to
connect the reset line into the PMIC/i.MX RT685 reset.

https://www.nxp.com/part/MCU-LINK#/
https://www.tag-connect.com

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 23

FIGURE 36. PMIC RESET CONNECTION.

Once debug access is enabled, you have another
method to program the flash on the FlexSPI port.
The MCUXpresso IDE debugger as well as the Segger
J-Link support programming of QSPI flashes as they
implement programming algorithms for SFDP based
flash devices. When you are in an edit/download/
debug loop, programming the QSPI via SWD is the
quickest way to get code loaded. The Serial ISP
function in ROM is also available but it is better suited
to loading of finished binaries for production, etc.

Realizing the Super Monkey Hardware
There is quite a bit of IO available on the i.MX RT685,
but I chose to constrain my design to the most com-
mon functions for real-time audio. My applications
generally use professional, “flagship quality” audio
codecs for musical instrument signal processing.
Using this as a guide, the process of coming up with a
minimal IO complement was simplified.

FIGURE 37. THE i.MX RT685 SUPER-MONKEY

I spent quite a bit of time considering a form factor.
Since this was my first attempt at an i.MX RT685
design, I elected to constrain the formfactor to
something known. Last year I developed the Mini-
Monkey around the NXP LPC55S69. For the “Super-
Monkey”, I chose to keep this form factor but extend
the number of IO. Decision making fatigue is a very
real concern for engineers. The “perfect module form
factor” trap is easy to fall into. It is tempting to spend
a great deal of time optimizing for a general-purpose
use case to handle unknown requirements. My
experience has shown me that in almost every case,
overthinking future possibilities at the outset never
pays dividends down the road. We engineer’s love
to tinker and will end up making changes anyway.
I have two separate projects I want to implement
with the i.MX RT685, so I decided to focus my efforts
exclusively on what I need.

I thought it would be instructive to list in Figure
35 some of the high-level processing capabilities
available in the i.MX RT685. It is difficult to overstate
the amount of capability packed into the i.MX RT685.
Every few years I like to step back and reflect on
progress that has been made with MCU integration.

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 24

It is often too easy to overlook the sum of science
& engineering needed to integrate this amount of
technology in a 9mmx9mm package. All of it for a
couple lattes at the coffee shop.

Super-Monkey IO

Power Input
+5v from the micro-USB or IO connector. There is
also JST “PH” connector for common LiPO batteries.
PCA9420 PMIC has a built-in battery charger so the
Super-Monkey can be “portable”.

Digital Audio IO
The Super-Monkey has two I2S/TDM audio interfaces
provided by the flexcomm peripheral. In my
applications, I tend to separate the ADC and DAC to
achieve the highest SNR. One channel will be used
to interface with an 8-channel audio ADC (Cirrus
Logic CS5368) and the other will be used with an
AES3 Audio Transmitter (Cirrus Logic CS8406). The
second channel will drive a professional audio DAC
(Cirrus Logic CS4398). For some applications, I prefer
the audio master clock to be generated with a high-
quality, minimal phase noise oscillator. The Super-
Monkey has a pin that can be used to bring in an
external master clock.

Digital Microphones
The Super-Monkey exposes all eight DMIC inputs
available on the i.MX RT685.

Spare Flexcomm
I reserved pins for one Flexcomm port to be allocated
on a per project basis. This will allow me to select I2C,
SPI, UART or an extra I2S bus as needed.

Debug UART
There is one dedicated UART exposed via the IO pins.
This UART can be used with the ROM bootloader to
program flash, fuses, etc.

I3C
I reserved two pins to experiment with the I3C bus.
I3C is a new superset of the I2C standard which allows
for much faster data rates, multi-master and hot join
capability. It lives at an interesting intersection of I2C
and SPI, so I wanted a platform to run experiments.

SDIO
A 4-bit SDIO port for adding an SD card. I do not
have an immediate requirement for SDIO but at
a minimum I get a handful of GPIO that are also
multiplexed with SCT (State Configuration Timer)
channels. I *really* like the SCT in all the LPC families
so I made sure to make it available.

ADC
I exposed three inputs to the i.MX RT685 1MSPS ADC,
two of which can be used to form a fully differential
input. The intent is to use the ADC channels for
potentiometers/user input. I have plans for piezo
vibration sensor applications as well.

LCD
I borrowed the 1.54” from the LPC55S69 Mini-
Monkey Design. In fact, the module form factor
was original designed around this specific display.
It looks really sharp, so I decided to include it for
some neat audio visualizations. The LCD is wired
to a dedicated 50MHz high speed SPI port and can
achieve high frame rates. Coupled with the large
RAM in the i.MX RT685, the Super-Monkey can
perform some interesting graphics applications.

Super Monkey PCB Routing
I intended the Super-Monkey to use a 4-layer PCB
stackup. To achieve a 4-layer design, I had to make
some compromises as compared to the layout on
RT685-EVK. The RT686 in the VFBGA176 package is
straightforward to fan out. In fact, the PCB routing on
the RT685-EVK has all IO fanned out on the top layer.
One caveat is that 3mil trace/space design rules are
required The EVK is quite large and there is plenty

https://www.adafruit.com/product/2011?gclid=CjwKCAjwlYCHBhAQEiwA4K21m_K5cgWHBxi_GU-pNwS1ahk6DXfiVNAWHzogu6RSzHw-_l8R1BWcjhoCjG8QAvD_BwE
https://community.nxp.com/t5/Blogs/LPC55S69-Embedded-Graphics-Decoding-Animated-GIFs/ba-p/1130869
https://community.nxp.com/t5/Blogs/LPC55S69-Embedded-Graphics-Decoding-Animated-GIFs/ba-p/1130869
https://www.buydisplay.com/1-54-inch-tft-lcd-display-ips-panel-screen-240x240-for-smart-watch

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 25

of room to bring all the traces on the top layer. The
Super-Monkey has more parts placed very close to the
MCU package, so I needed to make use of the bottom
layer near the package. As an alternative example to
the RT685-EVK, I chose to use 5mil design rules cou-
pled with via-in-pad technology to fan out the IO.

FIGURE 38. SUPER-MONKEY IO FANOUT

The via-in-pad geometry uses a 12-mil pad with 6mil
mechanical drill. This geometry is on the edge of
where laser microvias would be required. The two
inner layers (not shown) are dedicated to return and
power (Core, +1.8v and +3.3v). Via-in-pad allowed me
to use a more relaxed 5mil trace/space rule which
is a lower cost and higher yield option as compared
to 3-mil. Since I did not require all the i.MX RT685
IO, keeping to a 4-layer design was straightforward.
Via-in-pad does increase cost, but the trade-off vs
3-mil spacing makes it an attractive option to relax the
clearance specifications and fanout to other layers.
It also allows one place vias on the decoupling pad
simplifying placement.

The VFBGA176 package does leave some balls
unpopulated making routing and fanout simpler.
Most of the core power and ground connectors are
on the interior of the package. This alleviates quite
a bit of contention with IO. In Figure 36, you can see
the 0201 capacitors on the bottom side. I believe with
some work, 0402 size capacitors could be used to

relax manufacturing tolerances. 0201 capacitors are
quite small. Chris Denny of Worthington assembly
posted some nice blogs on optimum geometries for
high yield when using 0201 packages. He also has a
nice article on via-in-pad technology.

It is certainly possible to route the i.MX RT685
VFBGA176 on a 4-layer process and still be able to use
quite a bit of the IO. In fact, with a bit more work, I
feel I could use about 90% of the IO before resorting
to a 6-layer process. While this package is small, it is
still possible to use it successfully without breaking
the bank with high-cost PCB fabrication processes.

SuperMonkey Board Build
For board fabrication and assembly, I used
CircuitHub. CircuitHub handles all aspects of the
fabrication process. All you need to do is upload your
design files and CircuitHub will acquire the raw PCBs,
procure the components, and stuff the boards. The
CircuitHub workflow also allows for consigned parts.
Given the current situation with the supply chain, this
was a welcome feature. I was able to send them some
of the parts that were not available through normal
channels as I had “banked” a few of the components
several months ago.

FIGURE 39. THE i.MX RT685 SUPERMONKEY

https://www.worthingtonassembly.com/blog/2018/1/29/the-perfect-0201-footprint
https://www.worthingtonassembly.com/blog/2018/1/29/the-perfect-0201-footprint
https://www.worthingtonassembly.com/blog/2021/3/17/routing-fine-pitch-bga-and-csp-packages
https://circuithub.com

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 26

You can find source files for the hardware design
on GitHub.

The specs for this board use a small drill requirement
(6mil) and a tight annual ring (3mil). This drill
geometry was used for filled via-in pad technology on
the VFBGA176. I chose this approach for fanning out
the VFBGA176 package as it enabled looser specs on
trace space/width. The RT685-EVK did not use via-
in-pad technology, rather a 3mil trace space/width
for escaping some of the signals. I elected to use a
filled via-in-pad approach after some discussion with
CircuitHub. The result was a fairly simple routing
exercise on 4-layers. I do also want to point out that
this design utilized 0201 sized decoupling capacitors.
The 0201 decoupling capacitors were placed on the
bottom side of the board directly under the i.MX
RT685 MCU.

FIGURE 40. 0201 DECOUPLING CAPACITORS

I usually try to use packages that are as large as
possible to ease manufacturing design rules but
in this case I elected to use an 0201 size capacitor
to experiment with the “perfect 0201” land pattern
provided by Chris Denny of Worthington Assembly.
I believe with some work, 0402 size capacitors could
be used with the i.MX RT685 to relax manufacturing
tolerance. On my next project with the i.MX RT685, I
may use a smaller number of 0402 0.22uF decoupling

caps in place of 0201 sized 0.1uF decoupling caps.

The simplest approach to providing power to the
i.MX RT685 is using the NXP PCA9420BSAZ PMIC. The
PCA9420BSAZ comes in an interesting 24-pin QFN
package that also requires a soldered connection at
the corners of the device package.

FIGURE 41. THE PCA9420 PMIC FOR THE i.MX RT685

Using a service such as a CircuitHub saved a lot of
time and hassle as I did not have to worry about
manually placing and reflowing these parts. While the
i.MX RT685 in the VFBGA176 is not at the extremes
of package technology, I will gladly delegate the
assembly work to a 3rd party to ensure success on
the first attempt.

Bare Metal Bring Up with QSPI Flash
Before attempting to bring the board up with Zephyr,
it is important to make sure everything is working in a
bare metal context. The i.MX RT685 is a flashless MCU.
An external flash device is required for boot, or you
need some other mechanism for loading code in the
RAM. The RT685-EVK uses an Octal Flash connected
to FlexSPI port B. Octal flash technology is still quite
new to the MCU scene, and I really wanted to show
an example of using lower cost (and better availabil-
ity) QSPI Flash. In many cases QSPI will be a suitable

https://github.com/ehughes/rt_super
https://www.worthingtonassembly.com/blog/2018/1/29/the-perfect-0201-footprint
https://www.nxp.com/part/PCA9420BS#/

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 27

choice as code that needs high performance can be
executed from the copious supply of internal SRAM in
the i.MX RT685. The i.MX RT685 implements a cache
on the FlexSPI interface so execution from external
memory is still acceptable for many applications.
Another consideration is that if a design requires
access to all 8-DMIC channels, FlexSPI Port A must be
used for code storage. My intent was to design the
SuperMonkey as a reference for using a QSPI device
on FlexSPI port A.

The i.MX RT685 Boot Header
At powerup, the i.MX RT685 executes boot code from
ROM. The bootloader is configurable and requires
the boot source to be specified via three ISP pins. It
is important to leave the ability to select other boot
sources. In addition to booting from external flash,
there is boot mode that uses a USB or a serial connec-
tion to program internal fuses and perform produc-
tion programming operations. I find that indicating
the boot options on the schematic is a good design
practice to ensure the other utility boot modes do not
get overlooked.

From the build tooling perspective, there are a couple
changes that are necessary to use QSPI flash with the
i.MX RT685. You can use an MCUXpresso SDK example
project as a starting point even though it is configured
to use octal flash. The i.MX RT685 ROM bootloader
will attempt to access an external device on FlexSPI
A or B (depending on the ISP [2:0] pins) using a 1-bit
IO mode. A special data structure, the boot header, is
to be located at a 0x400 byte offset from the start of
external flash. This boot header provides additional
configuration details to the bootloader about the
attached flash device. All the example i.MX RT685
projects in the MCUXPresso SDK contain a boot header
suitable for an octal flash device. You can find the boot
header in flash_config/flash_config.c and it will need to
be modified to support QSPI boot.

FIGURE 42. BOOT HEADER LOCATION MCUXPRESSO PROJECT

If you dig into the linker file generated by the build
tools, it specifies a special section that is placed in the
QSPI memory region. Note that the. ld linker files are
automatically generated by default by MCUXpresso
and placed in the build configuration output folder
(for example, “debug”).

FIGURE 43. BOOT HEADER PLACEMENT WITH THE LINKER

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 28

Here is an example of a functional QSPI boot
header:

Once the boot header is built into your image, the
i.MX RT685 becomes “stand-alone” after a power
cycle. Note that if your project does not have a boot
header, or if it is not valid, the ROM bootloader will
jump to USB/serial downloader mode. There are tools,
such as:

https://github.com/JayHeng/NXP-MCUBootFlasher

that can also generate a boot header as well as place
it in the proper location in flash. I personally like
to bake it into the C source code so the project is
“bootable” without any additional steps.

MCUXpresso IDE Flash Programming
Configuration
Once MCUXpresso IDE is able to build a valid, boot-
able image we need a method to program it. One
approach is to use the serial/USB downloader built
into ROM. I prefer to use a debugger tool over the
SWD port. There are several options available, but I
want to present two that can perform flash program-
ming and debugging over the SWD connection.

https://github.com/JayHeng/NXP-MCUBootFlasher

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 29

MCUXpresso IDE + MCU-Link
The MCUXpresso IDE is capable of programming
QSPI flash on the i.MX RT685 with the low-cost MCU-
Link debug adapter. This is a path for quick success
but requires a change to the MCUXpresso IDE proj-
ect to indicate the type of flash connected and the
FlexSPI port.

FIGURE 44. QSPI FLASH PROGRAMMING DRIVER IN MCUXPRESSO IDE

Ensure that “MIMXRT685_FlexSPI_A_SFDP_QSPI.cfx” is
selected as the “Driver” for the flash region. Once this
change is made, you can simply start a debug session
and MCUXpresso will be able to program a QSPI flash
connected to FlexSPI port A.

FIGURE 45. PROGRAMMING AND DEBUG WITH AN NXP
MCU-LINK PROBE

Programming and Debug with Segger
J-Link + Segger Ozone
A tool that has become a favorite in my arsenal is
Segger’s Ozone Debugger. It is a full featured source
level graphically debugger designed to work with a
Segger J-Link. All you have to do is point to your .elf
or .axf file and Ozone handles the rest. I have found
Ozone to be a great option as it is very fast, can
inspect variables without halting the MCU and works
with all of NXP’s ARM MCUs. I discovered it back in
2014 while looking for a better tool for dual core
debugging on the NXP LPC4357 and have been using
it ever since.

When setting up an Ozone project, there are a couple
of settings that are required for working with the i.MX
RT685. Per Segger’s Wiki Article for the i.MX RT685,
use the MIMXRT685SFAWBR device when your flash
device is on FlexSPI port A.

FIGURE 46: SEGGER i.MX RT685 QSPI ON FLEXSPI PORT A SETUP

Also, per Segger’s Wiki Article working on
with a bootloader, make sure to uncomment
AfterTargetDownload() and AfterTargetReset().

FIGURE 47. AFTER TARGET DOWNLOAD CONFIGURATION

https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-debug-probe:MCU-LINK
https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-debug-probe:MCU-LINK
https://www.segger.com/products/development-tools/ozone-j-link-debugger/
https://wiki.segger.com/i.MXRT600
https://wiki.segger.com/i.MXRT600

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 30

I leave the Exec.Reset() to make sure to reset the
CPU after programming so the ROM bootloader
can take over. Lastly, make sure TargetReset() is left
commented out

FIGURE 48. TARGETRESET CONFIGURATION

FIGURE 49. AFTERTARGETRESET CONFIGURATION

These steps are important so that the ROM
bootloader functions are not interfered with after
the flash is programmed and the target is reset.
Once we have a working boot header and the ability
to program the board, the first order of business is
to toggle an IO pin. My first test program toggled a
couple IO every 50mS.

FIGURE 50. PROGRAMMING AND DEBUG WITH A SEGGER J-LINK
AND SEGGER OZONE.

At this point, we have successfully brought up the i.MX
RT685 with QSPI on FlexSPI port A and successfully
have toggled an IO. Now we know that our hardware
is good so we can get Zephyr up and running.

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 31

4. Zephyr RTOS Bringup on the i.MX RT685 SuperMonkey

I have been both vocal and enthusiastic about the
Zephyr Real Time Operating System (RTOS) and
recently presented my thoughts on some of the
“why”. The i.MX RT685 now has full platform support
in the latest LTS 2 version of Zephyr. The design goal
of the SuperMonkey design was to demonstrate a
minimal configuration of an i.MX RT685 using a QSPI
flash device. I wanted to demonstrate something a
little bit different than what was on the EVK as the
flash memory interface is highly configurable. Along
those same lines, I want to show what bringing up
Zephyr would look like on a custom i.MX RT685 board.
The flexibility of its flashless architecture means that
there are some additional considerations to get the
board up and running.

I really like bare minimum examples as they are the
best place to start when learning a new tool. Once
one understands the bare minimum configuration,
it is easier to pull in more complicated code from
other examples. Often the simplest example will show
all the structural elements so one can infer how a
system works. This makes adding functionality easier
to approach and there are just enough breadcrumbs
to discover more sophisticated functionality. The
example provided here illustrates just that; A minimal
example that will bring up enough to show you
that the system is working. For the case of a Zephyr
application on the i.MX RT685, I want to show that the
serial shell is functional. I will be inserting tidbits here
and there that are a bit beyond the scope of a board
port as they will leave breadcrumbs to some unique
Zephyr features and workflow.

A bit about Zephyr boards
When performing application development with
Zephyr, the concept of a “board” is central. A pow-
erful feature of Zephyr is to be able to retarget

an application to diverse hardware. Moving code
between say an LPC55S69 to an i.MX RT685 can be
straightforward as use of the built in APIs will allow
quite a bit of functionality to be reused with minimal
changes. When using Zephyr, you can still write all
the custom bare metal, raw register access code you
want. You are not limited to the Zephyr API. However,
using the common APIs for UART, I2C, etc. will make
the portability easier. This will reduce the total surface
area of code that will need to change between differ-
ent boards. The board abstraction is the core compo-
nent of this process so your application code can run
on multiple platforms.

So, what exactly is a Zephyr board? Loosely speaking,
it is a folder with

 ⊲ A device tree overlay that brings in a specific SoC
and peripheral configurations

 ⊲ Kconfig settings for the OS that are important for
the board

 ⊲ .c code to do things like pin muxes, etc.

 ⊲ Documentation

https://www.zephyrproject.org
https://www.nxp.com/design/training/should-i-care-about-zephyr-os-real-experiences-of-an-rtos-expert:TIP-SHOULD-I-CARE-ABOUT-ZEPHYR-OS
https://www.nxp.com/company/blog/zephyr-os-lts-2-release-adds-full-platform-support-for-i-mx-rt600-crossover-mcus:BL-ZEPHYR-OS-LTS-2-RELEASE
https://docs.zephyrproject.org/latest/build/dts/index.html
https://docs.zephyrproject.org/latest/build/cmake/index.html#configuration-system-kconfig

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 32

Basically, everything needed to sit on top of the OS code
to get the system up and running in some configuration.
An important point to note is that one can use a
“built-in” board to do quite a bit of work before even
considering a “custom” board definition. The device
tree system allows application code override/overlay
behaviors to “modify” an existing board. So, you don’t
always need a dedicated Zephyr “board” when using
your own hardware. The good news is that there are a
lot of boards to use as reference:

https://docs.zephyrproject.org/latest/boards/index.
html

For the case of the i.MX RT685, there is a nuance with
external flash setup that requires the use of a custom
board. For most MCUs with internal flash, the built-in
boards do 99% of what you need to get started.

Getting Setup for Custom
Board Development

Setting up a west manifest
In this article I will be weaving in some other Zephyr
concepts that I have found useful. There are several
workflows for managing Zephyr projects. The RTOS
itself is available here:

https://github.com/zephyrproject-rtos/zephyr

When 1st getting started, it is 100% OK to follow
the instructions and start hacking on projects in the
/samples directory. However, once I know I will be
doing some real work on a project, I like to organize
my project as a west manifest:

https://docs.zephyrproject.org/latest/guides/west/
manifest.html#option-4-sequence

There is quite a bit of documentation around
manifests which can be overwhelming. In the

simplest case, simply think of it as a way of
organizing git repositories for your project with
some automation. With a simple manifest, you can
specify the repository for your application code and
the repository for Zephyr. West can then be used
to fetch everything and get it setup for you. There
is a bit of setup time at the beginning but pays
dividends down the road. I like my application code
to exist “out of tree” from the Zephyr repo. The west
manifest automates the setup process.

As an example, check out the west.yml from here:

https://github.com/ehughes/rt_super_z/

This is a minimal manifest that will allow west to
initialize a folder and fetch the Zephyr source code.
As projects get more complicated, you can add other
dependencies at different revisions levels, etc. I find
this useful for maintaining “internal repositories” that
have not been upstreamed into the mainline Zephyr
codebase or for anything that I want to keep private
while I develop. You could even specify the repository
of your own Zephyr fork that is completely under your
control. The system is quite flexible. In fact, if you do
a bit of digging, you will find a west.yml in the main
zephyr repo which is a manifest of all the “stuff” that is
pulled in.

The key take-away once the manifest is created,
getting your project development environment setup
is just two commands (west init, west update) which
makes life much easier over the long term. When
you have multiple developers and multiple machines.
Feel free to use the rt_super_z repository as starting
point. This repo has the west manifest and a simple
hello world project structure that I will be using for my
board port.

https://docs.zephyrproject.org/latest/boards/index.html
https://docs.zephyrproject.org/latest/boards/index.html
https://github.com/zephyrproject-rtos/zephyr
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/guides/west/manifest.html#option-4-sequence
https://docs.zephyrproject.org/latest/guides/west/manifest.html#option-4-sequence
https://docs.zephyrproject.org/latest/develop/west/index.html
https://github.com/ehughes/rt_super_z/

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 33

Seeding your custom board
using the RT685 EVK
It is important to note that board porting is well docu-
mented here:

https://docs.zephyrproject.org/latest/guides/
porting/board_porting.html

You could use that documentation and start from
scratch but a copy/paste from a known working
configuration that is “close” is a good strategy. In the
Zephyr source tree, you can find the i.MX RT boards
under zephyr/boards/arm.

FIGURE 51. ZEPHYR MIMXRT685_EVK BOARD

Note that I use Visual Studio Code as an editor when
working with Zephyr. I find it very easy to navigate the
source tree when doing driver/board development.
The next step I took was to *copy* the mimxrt685_evk
folder into my application project under hello_world/
boards/arm. For initial development of the board port,
the hello world test will house my board direction.
I also followed the existing naming conventions to
create an “rt_super” board.

FIGURE 52. CUSTOM RT_SUPER BOARD

It takes just a few minutes to go through the .yaml,
defconfig, etc. to get your custom naming in place. I
first focused on remapping text that was MIMXRT685_
EVK to RT_SUPER. By default, Zephyr will look in its
default boards directory when you kick off a build. To
change this behavior, simply edit the CMakeLists.txt in
your application folder and add this:

FIGURE 53. SETTING THE BOARD_ROOT

This changes where Zephyr will look for your board
when kicking off a fresh build with “west build”. This
directory could be anywhere but for now I will keep
it local to this test project. I also like to fix the board
selection for my project, so I don’t have to specify it on
the command line during development of the board
package. Add this to your application CMakeLists.txt
to fix the board for the application:

FIGURE 54. FIXING THE BOARD FOR A PROJECT

At this point you should be able to kick of a build
and Zephyr will use the rt_super board in your local
application folder. Keep in mind that the goal here

https://docs.zephyrproject.org/latest/guides/porting/board_porting.html
https://docs.zephyrproject.org/latest/guides/porting/board_porting.html

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 34

was to simply copy files and rename items in the
.yaml and kconfig files so we have a clean starting
point with our “rt_super” board. None of the internal
configuration of the hardware has actually changed
at this point. We essentially have another board that
will target the MIMXRT685-EVK, just under a different
name. You could have also kept using the default
Zephyr boards folder for development. I chose to put
it in my application repository to make it a bit easier
to work between my home and office computers

Notable Customizations for
the SuperMonkey

QSPI and Boot Header
The i.MX RT685 represents a bit of a trickier case with
board porting versus a traditional MCU with built
in flash memory. There is a little more work to get
Zephyr configured for the particular flash on our cus-
tom hardware. If your design kept the same memory
configuration as the EVK (OctalSPI on FlexSPI Port
B), then additional setup is not necessary. Flashless
microcontrollers are both a blessing and a curse in
this regard. The flexibility allows for better application
customization but requires some more work up front
to get your system setup for development

After power up or reset, the i.MX RT685 first executes
a bootloader that is built into ROM. The i.MX RT685
ROM bootloader will attempt to access an external
device on FlexSPI Port A or B (depending on the
state ISP[2:0] pins) using a 1-bit IO mode. A special
data structure is expected at a 0x400 offset from
the base of the external flash memory. This boot
header provides additional configuration details
to the bootloader about the attached flash device.
The ROM code will reconfigure the interface per the
boot header configuration. If the boot header does
not exist or is invalid, the ROM will sit and wait for
commands over USB or a UART interface.

During a Zephyr build, the boot header needs to get
baked in so the generated binary can run properly
after reset. Using the mimxrt685_evk board as a
guide, we can modify the boot header for our custom
board. Learning how to navigate the Zephyr source
tree is an important aspect to being successful in
developing Zephyr boards and drivers.

Inside of the zephyr/boards/arm/mimxrt685_evk
folder is a file Kconfig.board.

FIGURE 55. BOOTHEADER INCLUSION

Here we are defining a new configuration option for
the board that selects a different option NXP_IMX_
RT6XX_BOOT_HEADER. The boot header is not actually
located in the Zephyr source tree, rather in another
NXP repository that gets pulled in when you first
setup your Zephyr workspace. Note that this happens
automatically when setting up Zephyr initially with
west init and west update. One reason I really like
using a west manifest as described previously is that
all these dependencies come in automagically.

FIGURE 56. NXP HAL LOCATION

In your Zephyr workspace is a modules folder that
contains external vendor libraries. If you dig inside, you
can find the NXP HAL. Open modules\hal\nxp\mcux\
boards\CMakelists.txt to can see how the configuration
option NXP_IMX_RT6XX_BOOT_HEADER is used.

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 35

FIGURE 57. BOOTHEADER / FLASH CONFIGURATION BUILD

The file flash_config.c contains a data structure with
an attribute for the linker to place it in the correct
location in flash. For our custom board, we will need
to have our own copy of this file with the custom boot
header. You can place your own version in the custom
board directory.

FIGURE 58. CUSTOMIZING FLASH_CONFIG.C

You can read more about the bootheader I used here.
To get the new added file included in the build, you
can add a line to the CMakeLists.txt in the custom
board folder:

FIGURE 59. BOARD.CMAKE UPDATE

Here we set BOOT_HEADER_ENABLE as it is used in
flash_config.c Note that we are safe to add flash_
config.c here. The version in the NXP HAL directory will
not be used as our custom Kconfig.board and Kconfig.
defconfig uses alternate naming for the board symbols.

The flash_config.c in the NXL HAL will not be added
to the build as the mimxrt685 board symbols will no
longer be enabled. At this point we are set up to our
custom boot header. This step is probably the most
complicated which is the result of the “flashless” nature
of the i.MX RT685 and its boot ROM.

Board Device Tree Overlay

RTC Disable
After getting the boot header configured, there were a
couple modifications needed in the board device tree
overlay. For the most part you can leave this identical
to the EVK. Even if there are peripherals you don’t
plan on using, you can leave the elements be. There
are a couple changes however needed to get the
SuperMonkey board to boot. I chose to not populate a
32.768kHz Crystal on my board.

FIGURE 60. NO RTC CRYSTAL ON THE SUPERMONKEY

I found that some of the low level i.MX RT685 SoC init
code would try to start it up causing boot issues. To
turn this off, I simply had to disable the driver in the
board level overlay:

FIGURE 60. DISABLING THE RTC IN THE DEVICE TREE

https://community.nxp.com/t5/Blogs/i-MX-RT685-SuperMonkey-QSPI-Bring-up-with-MCUXpresso-and-Segger/ba-p/1364695

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 36

Flash Configuration
The SuperMonkey uses a QSPI device for code stor-
age. I had to patch the flexspi node in the board
device tree overlay to indicate the new flash driver.
As a reference, I actually used the device tree overlay
from the i.MXRT1064 EVK board. This board uses the
same QSPI flash device as the SuperMonkey. Since the
i.MX RT685 and RT1060 share the same FlexSPI IP, we
can reuse the drives and device tree configuration.
The device tree approach used by Zephyr starts pay-
ing dividends quite quickly when one needs to stitch
together complicated systems as there is a defined
method for IP/driver re-use.

FIGURE 61. DEVICE TREE FLASH NODE

I did patch the flash size and partition sizes to be
more appropriate for my smaller capacity QSPI flash.

Board Kconfig.defconfig
There is one last config file that needs to be
patched for our particular flash configuration on the
SuperMonkey. Kconfig.defconfig inside of the board
folder has a bunch of additional Kconfig options
added you your project. There is a FLASH_SIZE config-
uration setting which defaults to a value pulled from
the device tree. Using the syntax from the MIMXRT685
EVK, I modified it to pull from our modified device
tree with QSPI. The Kconfig and device tree systems
are very powerful and allow configuration data to be
pulled into the build system and application code.

FIGURE 62. DEVICE TREE FLASH NODE

Keep in mind that at the end of the build process, the
Kconfig files and device tree overlays turn into header
files for your application to use to determine how the
system is configured. Kconfig options can be driven
from the device tree.

https://docs.zephyrproject.org/latest/guides/build/
kconfig/preprocessor-functions.html

Pin Multiplexing
NXP provided board ports add a file pinmux.c to the
build system. The purpose of this code is to provide
a function that will set up the pin mux on the device
to route desired functions to the physical pins on the
IC. Before we take a look at the function that does the
work, I wanted to point out a macro located at the
bottom of the file.

FIGURE 63. PIN MUX PRE-KERNEL SETUP

Zephyr is unique in that it provides macros to
statically define functionality in a very “clean” manner.
One of those macros is “SYS_INIT”. This macro adds
functions to a list that are called during kernel
initialization. In this case, rt_super_pinmux_init is
called before the kernel is initialized. The advantage
of this approach is that one can insert additional
behaviors at different points in the boot process
without hacking the core kernel code. This also
cleans up your “main” routine as you can specify
“APPLICATION” in the macro to have functions called
right before main(). I find that this approach makes

https://docs.zephyrproject.org/latest/guides/build/kconfig/preprocessor-functions.html
https://docs.zephyrproject.org/latest/guides/build/kconfig/preprocessor-functions.html

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 37

libraries and modules much easier to develop leaving
the application code tidy.

FIGURE 64. KCONFIG VS DEVICE TREE MACROS

In this implementation, you can see there is logic to
conditionally include pin mux setup functions. This code
provides an example of using both Kconfig macros and
device tree access macros. I mentioned before that
both KConfig and device tree overlay files ultimately
get translated into header files with macros that you
can use in your application code. Feel free to use as
much or as little functionality as you want in the pin
mux initialization code. It is a good idea to get any UART
pins setup in this stage as you will be able to see printk,
logging and shell output from the boot process. If you
want, you can also do pin mux configuration in your
application code but keep in mind you have the option
to get pins initialized very early in the boot process.

I do want to point out that there are some important
changes coming to pin muxing in Zephyr:

https://github.com/zephyrproject-rtos/zephyr/
issues/39740

Some platforms, such as the Nordic NRF families,
have a great deal of flexibility in pin assignments
where any digital function can be routed to any pin. In
this case, NRF based device trees overlays can specify
IO pins when peripherals nodes are instantiated.
This makes modifying boards very simple with the

device tree overlay mechanism. There is work in
progress on a new pinctrl API that will allow similar
behavior (within the limits of the particular chip)
such that pin assignments can be performed in the
device tree overlay. Keep a lookout for this feature in
future releases. For now, you will need to perform pin
muxing in the board initialization functions or in your
application code.

Board.cmake
This file is used to define “runners” that will allow
programming with the west flash. Feel free to look
at other board examples to set this up. In my case, I
liked to program and debug with Segger Ozone and a
J-Link instead of using the command line flash mecha-
nism. You can see my i.MX RT685 setup here:

https://community.nxp.com/t5/Blogs/i-MX-RT685-
SuperMonkey-QSPI-Bring-up-with-MCUXpresso-and-
Segger/b...

When a build is complete, you can use zephyr.elf
in build/zephyr folder of your application. With this
approach you can get fully featured source level
debugging of your Zephyr application. Ozone even
offers the ability to be Zephyr “thread aware”.

https://github.com/zephyrproject-rtos/zephyr/issues/39740
https://github.com/zephyrproject-rtos/zephyr/issues/39740
https://community.nxp.com/t5/Blogs/i-MX-RT685-SuperMonkey-QSPI-Bring-up-with-MCUXpresso-and-Segger/ba-p/1364695
https://community.nxp.com/t5/Blogs/i-MX-RT685-SuperMonkey-QSPI-Bring-up-with-MCUXpresso-and-Segger/ba-p/1364695
https://community.nxp.com/t5/Blogs/i-MX-RT685-SuperMonkey-QSPI-Bring-up-with-MCUXpresso-and-Segger/ba-p/1364695

FROM HARDWARE CONCEPT TO ZEPHYR BRING UP – THE ROAD TO USING A CROSSOVER MCU/DSP WITH ZEPHYR 38

Final Results

Given the additional steps needed for the i.MX RT685
board port, I wanted to test with a simple project that
turns on the shell. This would give me a workable
base to expand the board port. My hello_world
program turns on the Zephyr shell over a UART and
enables a “monkey” command.

FIGURE 65. FINAL RESULTS.

Ascii art sourced from https://textart.sh/topic/
monkey

We now have the fundamental elements in place for
this board port. I hope you found this information in
getting the i.MX RT685, or any other part, setup with
a custom board in Zephyr. One you get acclimated to
the Zephyr workflow, it isn’t too complicated to build
new applications, drivers and boards quickly. The
i.MX RT685 requires a few extra steps to get the boot
header in place but once you have the RTOS building,
you are on your way to making some cool stuff.

This particular has a large amount of internal SRAM
(4.5MB), a secondary DSP core (a topic for another
day), and cool DSP peripherals (the PowerQuad) so it
makes a great playground for Zephyr applications.

You can find SuperMonkey board port here.

There you have it! A walkthrough from PCB design
through Zephyr RTOS bringup with the i.MX RT685. I
hope you found this article helpful in seeing the end
to end process.

https://textart.sh/topic/monkey
https://textart.sh/topic/monkey
https://github.com/ehughes/rt_super_z/

	1. Synopsis
	2. “Crossing Over” with i.MX RT685
	The i.MX RT685 General Purpose
CPU Platform
	The PowerQuad Co-Processor
	CASPER
	Cadence Tensilica® HiFi 4 DSP
	i.MX RT685 Memory Architecture
	Inter-processor Communications and Synchronization
	i.MX RT685 Audio Peripherals
	General Purpose Connectivity and Timers
	I3C

	3. The Minimal Configuration i.MX RT685 Hardware Project.
Codename “Super-Monkey”
	i.MX RT685 PCB Layout Consideration: The VFBGA176 Package
	i.MX RT685 Power
	Understanding the i.MX RT685 Power Supply Strategy
	+1.8v “Always-On” and Analog Functions
	User IO
	Power Management Options for the i.MX RT685
	i.MX RT685 Flash Memory Interface
	FlexSPI Flash Controller
	QSPI on FlexSPI Port A Configuration
and Boot
	Boot Configuration
	Programming and Debug
	ISP Serial Boot Support Software
	i.MX RT685 Debug
	Realizing the Super Monkey Hardware
	SuperMonkey Board Build
	Bare Metal Bring Up with QSPI Flash
	The i.MX RT685 Boot Header
	MCUXpresso IDE + MCU-Link
	Programming and Debug with Segger
J-Link + Segger Ozone

	4. Zephyr RTOS Bringup on the i.MX RT685 SuperMonkey
	A bit about Zephyr boards
	Getting Setup for Custom Board Development
	Seeding your custom board using the RT685 EVK
	Notable Customizations for the SuperMonkey
	Board Device Tree Overlay

	Final Results

