
Fact gathering:
the first and most
important task in
software negotiations
Karen Copenhaver and Steve Winslow

www.linuxfoundation.org

The Linux Foundation2Fact gathering: the first and most important task in software negotiations

Introduction ... 3

Software is not static .. 4

A software provider will not be the author
of all of the software that is being delivered .. 5

Software will be developed with a set of tools, which can
be important to the delivery of software and solutions 7

Many of the most valuable third-party components
and tools are made available under open source licenses 9

Software licenses can be categorized in unlimited ways 10

Some of the most essential and widely used software
is provided under the GPL and other copyleft licenses 11

Conclusion ... 12

Table of Contents

The Linux Foundation3Fact gathering: the first and most important task in software negotiations

What is true of individual lawyers is also true of groups
of lawyers and procurement professionals attempting
to negotiate an agreement. If both parties shared
a common understanding of the facts, drafting the
agreement would be much more efficient. By facts,
I mean details about the context of the agreement
that are fixed and verifiable. I am not suggesting
that the parties could or need to share opinions or a
shared vision of how the relationship might unfold. I
am thinking about negotiators who do not know what
the human beings employed by both parties who will
perform the work all know to be true.

As an easy example, when the people negotiating a
software development agreement do not know that the
developers for both parties assume that the software
will include many pre-existing components, the process
will be horribly inefficient. This is more than just a
waste of time. When the developers are confronted

with ridiculous assumptions about writing software
from scratch, the credibility of the procurement
process is undermined, and, in the future, they will
find ways to avoid or delay involving procurement and
counsel. Where the parties write around what they do
not understand, the agreement that results will be full
of vague or inaccurate language.

The purpose of this article is to lay out some basic facts
about how software is developed and works today in
an attempt to help procurement professionals and their
legal counsel avoid making factual assumptions that
will undermine their credibility and delay negotiations.

Introduction by Karen Copenhaver:

When I began practicing law 30 years ago, I had a fabulous manager. He always reminded all of
us that practicing law is ninety percent fact gathering and ten percent legal analysis. You cannot
do the legal analysis until you fully understand the facts. If our drafting was vague, it was almost
always because we were writing around facts that we didn’t fully understand. We were leaving
space because we could not be precise.

The Linux Foundation4Fact gathering: the first and most important task in software negotiations

Software is not static
The software that will be
developed will evolve as
it is developed.
In the early days of the software industry, attorneys
assumed that they could comprehensively capture
a business relationship in the written contract. The
agreement would include detailed specifications for
the product to be developed, and there would be a
project timeline with milestones tied to achieving those
specifications. When the agreement was executed,
usually after many months of negotiations, the parties
knew exactly what they were contractually obligated to
deliver and when. Even then, this was a myth.

If we required a detailed, final specification for
development before the parties could begin work
today, we would only be assured that the results would
be too late to market to be valuable. Agreements today
have to be focused on establishing the process for
working together to develop something which neither
party can fully define or envision. In other words, the
only thing we know is that what we develop together
will change as the work is performed, the operating
environment is updated, and the market changes.

Thus, requiring that a fixed list of the specific software
components that will be used in the development be
included in the agreement may not make sense to

the people who will actually perform the work. They
may know that the list will change often, and they
do not want to amend the agreement every time
they consider, include, or replace a component. A
process acceptable to both parties that allows for the
rapid evolution of the work to be performed will be
welcomed.

Software will change
continuously over the
course of its normal life.
Software is never “finished” until it is uninstalled.
Constant updating is required to accommodate changes
in the operating environment and to apply patches
that become available to eliminate potential security
vulnerabilities. If the software is not updated, that
should be a sign that necessary software maintenance is
not occurring. And changes in the hardware or software
operating environment provide opportunities to improve
software functionality. The agreement should not be
written based on the assumption that all development
will come to a conclusion at any point prior to the end of
the life of the software.

The Linux Foundation5Fact gathering: the first and most important task in software negotiations

A software provider will not be the
author of and will not “own” the
copyright in all of the software that
is being delivered
A company that provides software will almost never
be the sole author, nor the sole copyright owner, of the
entirety of what they provide to the recipient. Software
will include components owned and developed by third
parties and will rely on dependencies that may not be
part of the distributed package of software.

Developers do not sit down to develop software with
a clean sheet of paper – just as lawyers do not sit
down to draft agreements from scratch. They make
use of templates and libraries both for efficiency and
for efficacy. Software libraries that have been in use
for many years and have been deployed for many
purposes benefit from the fixes and improvements
provided by others. As a highly regarded technical
expert said in a negotiation, “Believe me. You do not
want anyone writing a new math library from scratch so
that you can own it.”

Because software does not operate in a vacuum,
components, and interfaces written by third parties are
necessary for the software to function. For example,
applications installed on a laptop use interfaces in the
operating system. The functionality provided over a
network sits on top of a stack of software that is so

ubiquitous its value is rarely acknowledged. Without
using the libraries and/or interfaces that provide
access to this infrastructure, the software cannot be
developed, tested, or deployed.

In addition to what is developed and delivered as part
of the agreement, all software operates within one or
more ecosystems of third-party dependencies that are
necessary for its optimal use and performance.

This was the case even when software was something
that was typically purchased in physical form
and installed from a floppy disk or CD-ROM: the
software’s packaging would list its minimum system
requirements, which could include hardware, software,
services (such as sufficient Internet bandwidth) and
more. The purchaser reasonably needs to know what
those dependencies are. Still, the purchaser might not
reasonably expect that the provider is going to make
contractual commitments regarding the entire stack of
those dependencies.

In modern software ecosystems, the situation
is exponentially more complicated. Leveraged
dependencies might be needed when the software is

The Linux Foundation6Fact gathering: the first and most important task in software negotiations

built, or when it is installed, or when it runs.
The software provider might not deliver these
dependencies to the purchaser at all but might instead
provide only a manifest file listing the dependencies or a
recipe for how to install and configure the dependency
environment. As part of the installation process, the
purchaser would use these manifests and recipes to
obtain those dependencies directly from the upstream
third parties that make them publicly available.

The use of these dependencies will directly influence
the price at which the software provider offers
their software for sale. If the software provider was
contractually required to be the original author or

copyright holder of all relevant code that is utilized by
the software, then the price would be astronomically
higher because every software product would require
starting from scratch and disregarding the ecosystems
of established, well-tested, pre-existing code.

The Linux Foundation7Fact gathering: the first and most important task in software negotiations

Software will be developed
with a set of tools, which can
be important to the delivery
of software and solutions
Just as lawyers rely on a word processing program to
write an agreement, software developers use software
tools to make development more efficient. These
tools are often the most complex software involved
in the development project and the amount of code
in this development environment will almost always
far exceed the amount of code in the developed
deliverable. And this software will change and evolve
just as the software that is being developed will change
and evolve. Knowing the specific facts related to the
collection of tools used to develop this software is
essential to avoid unworkable approaches.

Sometimes the development environment will be a
third-party product that can be acquired directly from
the third party. If a version of the third-party product
that is being used is specified, the customer will be
able to replicate and maintain that development
environment should it ever be needed.

Other times, the reason to hire a specific company to
do the work is that they have a well-established, unique
development environment, and, just as important,
a set of highly skilled developers trained to use it.

These tools operate within their own very complex
operating environment. They are not like hammers
and screwdrivers that can be put into a box and
used separately. The phrase that is commonly used
is “development environment” because the tools are
integrated into a complex ecosystem and are not useful
or necessarily trustworthy outside of that ecosystem.

To “deliver” the entire development environment
is often impractical for a number of reasons. The
company asking for it to be delivered may not have
sufficient equipment or technical employees even to
install the software, much less maintain it. And no one
would deploy software developed by individuals at the
bottom of a learning curve. In one negotiation that was
hung up on a demand to deliver all of the tools used
in development, a technical person employed by the
company making the demand, when asked to weigh in
on the request replied, “We wouldn’t know what to do
with it if we had it.”

To deliver any code at a single point in time, without a
plan for someone to maintain the code going forward,
is not useful. The following day that software may be

The Linux Foundation8Fact gathering: the first and most important task in software negotiations

dangerously out of date. Similarly, establishing a source
code escrow arrangement may be a significant amount
of effort for very little practical risk mitigation. Access
to some version of some amount of source code will
not be of much practical use to a purchaser who does
not have the specifically-configured development
environment in which it was built or experience with
how to build and deploy it. Deciding to put an entire
development environment, the hardware, software
toolchain, and source code into escrow would be
prohibitively expensive.

Delivering the code in a development environment is
an enormous amount of work that must be performed
by highly skilled individuals - often the same individuals
who are required to perform the work you have
engaged the vendor to perform. Requiring delivery of
the development environment as a contract solution
where the technical employees of both companies

know that the delivered code will never be used, is
experienced by developers as a frustrating waste of
valuable resources that will delay the work everyone
wants the vendor to perform.

The Linux Foundation9Fact gathering: the first and most important task in software negotiations

Many of the most valuable
third-party components and
tools are made available under
open source licenses
It is almost never possible to fulfill a contractual
requirement not to use open source software in
development. There are extremely valuable compilers
and other development tools that are used in
essentially all software development environments
that are made available under open source licenses.
Depending on the analyst firm, most estimates
suggest 70-90% of all the code in a system will be built
from open source software. And even proprietary,
purchased solutions that your technical team currently
uses are very likely built in large part with open source
components. Unless your own technical people
agree that there should be no open source code of
any kind used in its development, do not ask for a
representation or warranty that there will be no open
source from a contractor or supplier.

If software made available under an open source
license will be used, the relevant questions you should
ask relating to the selection of the code, maintenance
of the code, and compliance with the applicable license
terms in the specific use case. And all of these are
questions that should be asked about both open source
and non-open source software.

If all of your competitors are using these valuable open
source assets, and you do not, it will be difficult to be
competitive on cost, quality, maintenance, and security.
One of the most important reasons to use open source
is to benefit from the advantages of shared support
across an ecosystem.

The Linux Foundation10Fact gathering: the first and most important task in software negotiations

Software licenses can be
categorized in unlimited ways
There are many software licenses. Some are licenses that
the Open Source Initiative (https://opensource.org/) has
approved as consistent with the Open Source Definition
(https://opensource.org/osd-annotated). Some are
licenses that are similar to those licenses but have
never been approved. Some are sufficiently different
from those licenses that they would not be considered
by people familiar with this terminology to be “open.”
Others are clearly what would be generally referred to as
“commercial” or “proprietary” licenses. In other words,
there is a broad spectrum. And there are more licenses
to put on that spectrum every day. The SPDX License
List (https://spdx.org/licenses/) has been curated by
lawyers working in the open source ecosystem and
identifies many of the licenses that frequently come up
in reviews and negotiations.

The question is: does any practical difference arise
in any specific contractual context based on exactly
where a license falls on that spectrum? In every context
that I can think of, contractual concerns regarding the
license applicable to third party software components
(selection of the code, maintenance of the code, and
compliance with the applicable license terms) will be
the same regardless of where that license falls on any
spectrum of license types. Spending time and energy

trying to define a separate category of Open Source
Software is not helpful in reaching an agreement. This
will become more important if the licenses for some
essential third-party components no longer seek OSI
approval. Aside from how the open source ecosystem
may categorize licenses, all software licensed from third
parties should be evaluated under the same criteria for
your project.

Because of the wide variety of licenses with similar
effect but minor variations in wording, it may be
unintentionally detrimental to require that only OSI-
approved licenses may be used for all dependencies or
components.

https://opensource.org/
https://opensource.org/osd-annotated
https://spdx.org/licenses/

The Linux Foundation11Fact gathering: the first and most important task in software negotiations

Some of the most essential
and widely used software is
provided under the GPL and
other copyleft licenses
In modern computing, a great amount of the most
valuable and useful software components and tools are
made available under a version of the Free Software
Foundation’s General Public License (the “GPL”) or
another license that is commonly referred to as a
copyleft, reciprocal or sharing license.

GPL-licensed software such as the GCC Compiler
and the Linux operating system is used by the vast
majority of companies and industries around the
world. Contrary to urban legend, it is not impossible
for commercial companies to comply with copyleft
obligations. It is not impossible to use both copyleft
software and independent software that is not subject
to the copyleft obligations. Companies do this in careful
compliance with the license requirements every day all
around the world.

The distribution of the software usually triggers
copyleft obligations to provide source code. Many
businesses are built on top of the GPL-licensed
Linux operating system and other copyleft software
that is used in the business to provide services but
not distributed.

The perception of the GPL and its variants as being
unworkable open source licenses is also inaccurate.
Keep in mind that the GPL, like all free and open source
licenses, does not restrict your usage. As a recipient
of GPL software, you have far more expansive license
rights to use the software than you have under a
proprietary software license agreement. Compliance
with the GPL upon a redistribution of the code may be
a factor to consider. Still, it is unlikely that you would
have the right to redistribute any proprietary software
at all. If your technical people are certain that you will
not be redistributing the GPL code, then negotiating for
a “no GPL allowed” provision in an agreement where
you are acquiring software is essentially negotiating to
receive fewer rights than you otherwise might have.

Unless your technical people agree that there should
be no GPL or copyleft licensed code of any kind used
in its development or provided in the work product,
do not ask for a representation or warranty that
there will be no copyleft software. Once again, the
relevant questions related to the selection of the code,
maintenance of the code, and compliance with the
applicable license terms in the relevant use case.

The Linux Foundation12Fact gathering: the first and most important task in software negotiations

Conclusion
If we only can make one point, it is that lawyers
and procurement professionals should not even
attempt to dictate how software development will be
accomplished. If negotiations hit a rough patch, take
the time to confirm that the real issue is risk allocation.
Make sure that the dispute is not due to insistence on
facts that your technical team does not believe to be
true. This is particularly difficult when longstanding
corporate policies are out of step with current realities.

A company can have a “no GPL policy.” Still, it cannot
operate in most industries without dependence upon
the Linux operating system, which is GPL-licensed
software. Relying on the policy as an all-powerful
argument does not change that fact, nor does it add

any benefit if the policy does not reflect the reality
of your developers’ actual technical operations.
Taking the time to gather the facts so you can work
from the same knowledge-base as those of your own
employees who will actually do or oversee the work
to be performed will save time and result in a better
agreement and relationship.

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

