Securing Hyperledger Fabric

Monitoring and analyzing blockchain deployments using Splunk

Christopher Cordi

splunk > turn data into doing^{**}

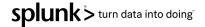
Chris Cordi

Software Engineer

Splunk Blockchain Team

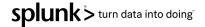
Why Splunk Blockchain?

Blockchain solutions hold a lot of promise but add new and difficult infrastructure, application and security requirements.


- Hard to gain end to end visibility between all components
- Many options to choose for infrastructure including on-prem, cloud, hybrid, unmanaged, managed and multi-organization.
- **Diverse set of data sources** both with differing formats and velocities.
- Different blockchain technologies and platforms
- Interoperability and collaboration between consortiums
- Disparate tools for logging, metrics, tracing, transaction analytics and security.
- **Different tools (if any)** for load testing and development performance vs production monitoring and investigation.

Hyperledger Fabric Overview

Hyperledger Fabric is designed to enable secure collaboration between multiple organizations operating with limited trust.


Despite the security improvements Hyperledger Fabric provides, deployments still require careful configuration and monitoring to ensure that they are operating securely.

We're going to review different types of threats that Hyperledger Fabric operators should consider and discuss how to mitigate them.

Assets to Protect

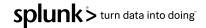
- Data
 - IP or otherwise sensitive data
- Hardware
- Software/Applications

Threats to Hyperledger Fabric Networks

As a permissioned blockchain, Hyperledger Fabric's network threats can differ from popular permissionless chains.

Some attacks are common to all distributed systems like Denial of Service (DoS) or consensus manipulation.

Other attacks target specific components in a Hyperledger Fabric network, such as the Membership Service Provider (MSP).


Threats: Denial of Service (DoS)

Denial of Service attacks disrupt the network's availability and are a threat to any distributed system.

Many different attacks can result in denial of service, which makes it difficult to proactively prevent.

Mitigation:

 collecting performance metrics, such as transaction throughput and latency, to detect compromised availability early on

Threats: Consensus Manipulation

Attacks on the network consensus include DoS and transaction reordering attacks.

Mitigation:

 Logging threat indicators, such as leadership elections and transaction latencies, can speed up detection.

Threats: MSP Compromise

The Membership Serice Provider (MSP) is able to modify access control to the network and, if malicious, could deny service and perform Sybil attacks.

The MSP may be compromised by a rogue insider or through private key theft, which may only be detectable after exploitation.

Mitigation:

- Follow Key Management and Access Control best practices
- Logging and alerting MSP actions, such as certificate creation and revocation

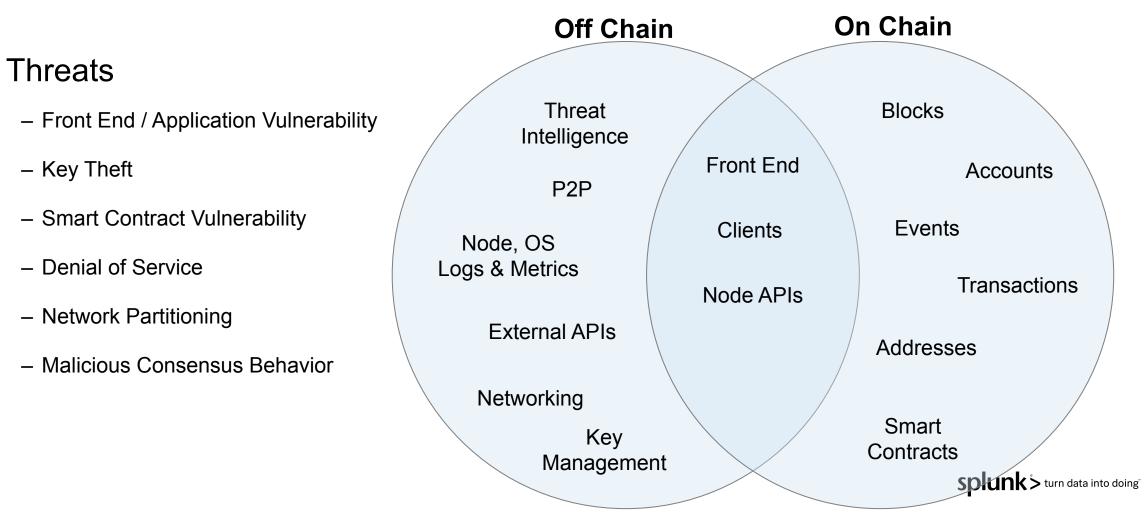
Threats: Smart Contract Exploitation

Smart contract exploits can compromise business logic and network performance.

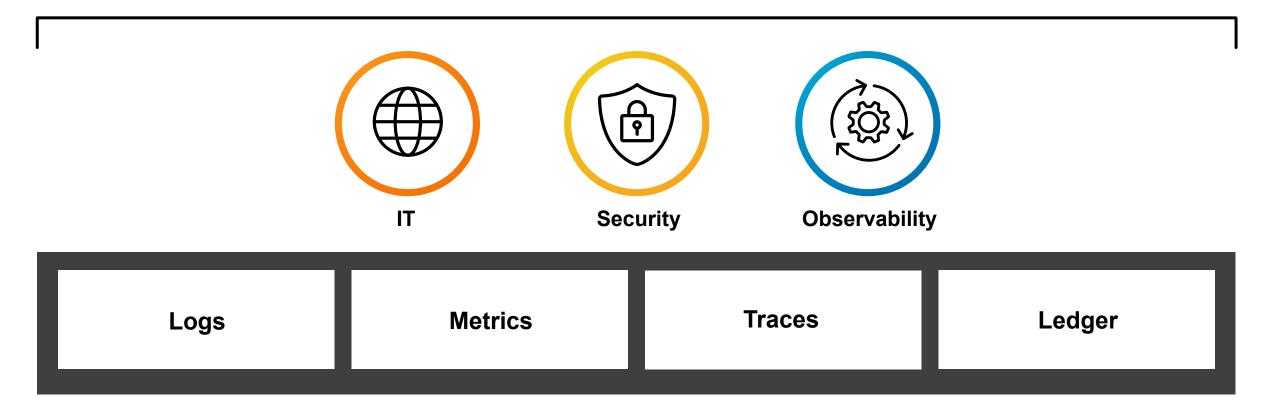
In addition to ordinary programming logic bugs, common errors can also stem from inappropriately handling concurrency or nondeterminism.

Mitigation:

- Design smart contracts with security in mind
- Smart contract analysis tools like the Hyperledger Lab Chaincode Analyzer
- External Security Audits
- Monitor performance and usage of the smart contract to detect anomalous behavior.



Key Data Sources


Threat	Indicators	Data Source	
Denial of Service	Tx throughput & latency Block latency # Senders # Open connections	Block headers, Node metrics	
Consensus Manipulation	Changes in chain config Leadership Elections	Blocks Node logs	
Ledger Manipulation	Orphaned blocks	Block headers	
Smart Contract Exploitation	Scanned Vulnerabilities	Vulnerability Scanner	

Additional Threats & Data Sources

Effective Monitoring Requires Both On Chain & Off Chain Data

Data-to-Everything Platform

splunk > turn data into doing

Splunk App for Hyperledger Fabric

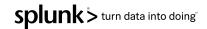
Gain full observability around Hyperledger Fabric environments

INFRASTRUCTURE HEALTH & MONITORING | ANALYZE LEDGER DATA | ACT ON CHAINCODE EVENTS

Gain observability into the Consortium

Unify monitoring, troubleshooting, investigation, and take action on Hyperledger Fabric components across organizations and multi-cloud environments.

Reduce MTTR by combining logs, metrics and traces

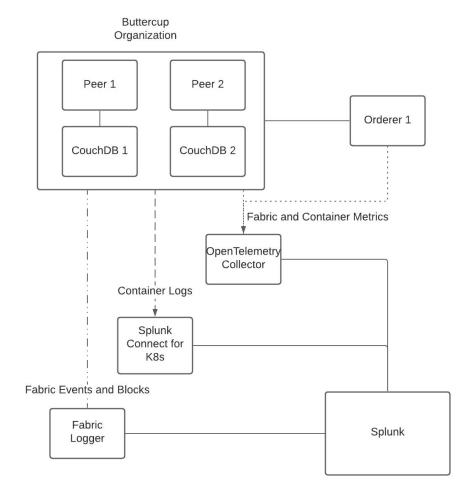

Remove data silos and the need for multiple tools when troubleshooting and optimizing the network.

Get to production faster and securely

Understand the performance of your development and monitor configuration changes.

https://splunkbase.splunk.com/app/4605

Getting Started with Splunk App for Fabric


We can easily analyze Hyperledger Fabric's ledger, log, and metric data with the following tools.

- Splunk Connect for Hyperledger Fabric grabs ledger and metric data from a Hyperledger Fabric deployment.
- The Splunk Docker logging driver or Splunk Connect for Kubernetes can be used to send container logs to Splunk.
- Finally, Splunk App for Hyperledger Fabric visualizes this data in Splunk.

See <u>https://github.com/splunk/fabric-logger</u> for an example docker-compose incorporating these tools.

Getting Data In

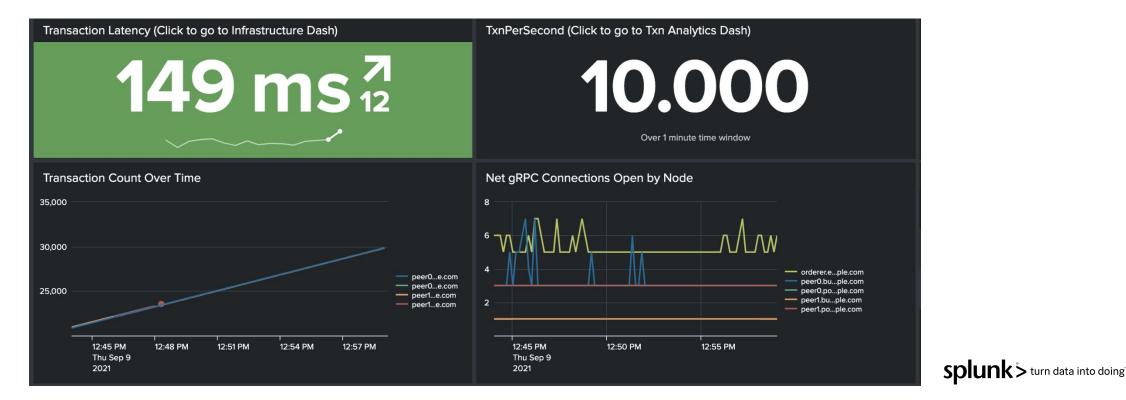
splunk > turn data into doing

Example Security Dashboard

—						
splunk>enterprise Apps ▼ Search Metrics Reports Alerts Dashboards ▼	•	Administrator * 3 Messages * Settings * Activity * Help * Find Q HYPERLEDGER FABRIC				
Security Monitoring Time Range Refresh Interval Last 60 minutes • 30s • Hide Filters		Edit Export •				
i Denial of Service Indicators						
Transaction Latency (Click to go to Infrastructure Dash)	TxnPerSecond (Click to go to Txn Analytics Dash) 1.300 Over 1 minute time window	Unique Transaction Senders				
Transaction Count Over Time 30 20 10 33.45 PM 4:00 PM 415 PM 4:30 PM 10	Net gRPC Connections Open by Node	Orderer TLS Connections to Other Nodes				
i Blockchain Integrity & Consensus Manipulation Attack Indicators						
Orphaned Blocks (Drilldown)	Config Updates 6.000 Over 15 minute time window	Consensus Leader Changes Over 15 minute time window				
Consensus Leader Changes Iocaihost:18000/en-US/app/splunk-hyperiedger-fabric/search	Config Update Transactions per Channel					

Detecting DoS Attacks

What would detect during a DoS attack?

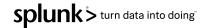

In this scenario, an authorized user has their keys compromised and begins spamming the network with transactions.

We will be paying particular attention to the **transaction latency**, **throughput**, and **number of open connections**.

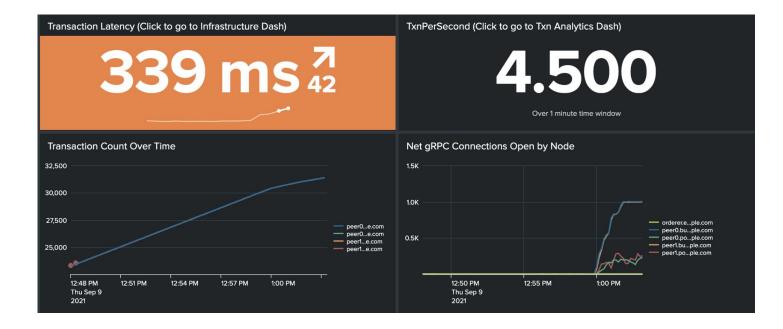
First, we'll look at the normal case where a single client is sending 10 transactions per second.

Baseline Measurements

Normal case: a single client is sending 10 transactions per second.



Adversary Scenario


Next, we'll have a single client open up persistent 1000 connections each performing 1 query per minute.

We expect to see:

- transaction latency starts to increase
- transactions per second decreases
- the number of open connections increases.

Adversary Scenario Results

At this point, it may be difficult to determine if this is reflective of a high period of load, misconfiguration, or a denial of service attack.

splunk > turn data into doing

Adversary Scenario Results

Drilling Down on Errors

Transaction Latency and Block Perform	mance (Drilldown) i TxnPerSecond (Cl	ick to go to Txn Analytics Dash) 4.500 Over 1 minute time window	Error Rate (Drilldown) i 14 -83
Error Count 400 200	I_		peer 0 buttercup exempte com 3da2eb5x84/c peer0 popstarexample.com 3da2b5x84/c peer1 pupstarexample.com 3d0aa3/f2/44 peer1 buttercup exempte com ccc6288/f588
1238 РМ 1240 РМ 12 Thu Sep 9 2021 Еггогs	12-70 12-34 PM 12-36 PM 12-38 PM 12-50 PM	12:52 PM 12:54 PM 12:56 PM 12:58 PM 100 PM	LO2 PM 1:04 PM 1:06 PM
_time \$	container_id ≎	Msg 🕈	
2021-09-09 13:07:15.997	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60158: i/o timeout
2021-09-09 13:07:15.983	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60154: i/o timeout
2021-09-09 13:07:15.971	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60124: i/o timeout
2021-09-09 13:07:15.952	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60082: i/o timeout
2021-09-09 13:07:15.949	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60068: i/o timeout
2021-09-09 13:07:15.923	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60044: i/o timeout
2021-09-09 13:07:15.921	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60034: i/o timeout
2021-09-09 13:07:15.919	peer1.popstar.example.com-5b3797cbd538	TLS handshake failed with error read tcp 172.22.0.12:7051	->172.22.0.16:60026: i/o timeout

We can investigate further in the Infrastructure Health and Monitoring Dashboard, where we see connection and I/O timeout errors.

Adversary Scenario Results

Because we noticed a large number of open connections, we should query Splunk to see the distribution of gRPC message subjects and addresses.

<pre>index=hyperledger_logs "line.grpc.method"!="" stats count by line.grpc.peer_subject rename line.grpc.peer_subject as Subject, count as Count</pre>			Last 15 minutes v
 ✓ 166,434 events (9/9/2112:53:00.000 PM to 9/9/211:08:00.000 PM) No Event Sampling ▼ 	Job ▼ II	~ € ⊥	♥ Verbose Mode
Events (166,434) Patterns Statistics (3) Visualization			
20 Per Page 🔻 🖌 Format 🛛 Preview 💌			
Subject \$			🖌 Count 🗢 🖌
CN=User1@buttercup.example.com,L=San Francisco,ST=California,C=US			153450
CN=tlsca.buttercup.example.com,O=buttercup.example.com,L=San Francisco,ST=Calif	3293		
CN=tlsca.popstar.example.com,O=popstar.example.com,L=San Francisco,ST=Californi	3195		

When we perform this search we see a large discrepancy in message count -indicating that "User1@buttercup.example.com,L=San Francisco,ST=California,C=US" is likely compromised or misconfigured and should be investigated further.^{splunk > turn data into doing}

More Integrations

Splunk Application Performance Monitoring (APM) real-time observability

Splunk On-Call intelligent outage alerting

Splunk Enterprise Security enrich and prioritize notables based on risk

Splunk SOAR automate parts of the incident response process.

splunk > turn data into doing

S&P Case Study

Case Study Splunk correlates data across all datasets —including Hyperledger Fabric

https://www.hyperledger.org/learn/publications/splunk-sp-case-study

splunk > turn data into doing

Thank You

splunkdlt.com

