
Introduction to Hyperledger Business Blockchain 
Design Philosophy and Consensus

This is the first in a series of papers from the Hyperledger Architecture Working 
Group (WG). These papers describe a generalized reference architecture for 
permissioned blockchain networks and share the recommendations of the 
Hyperledger Architecture WG with the end goal of guiding all Hyperledger 
projects towards modular designs. These papers also serve as a vendor-
neutral resource for technical blockchain users and developers interested in 
using permissioned blockchain networks. 

In this initial paper, we aim to: 

1. Outline the overarching Hyperledger design philosophy for permissioned 
blockchain networks.

2. Explain how our approach optimizes the development of flexible, 
interoperable enterprise blockchain technologies.

3. Identify the core permissioned blockchain network components that the 
Architecture WG has been and will continue to define through its work.

4. Provide a generalized reference architecture for consensus.

5. Explore how each Hyperledger business blockchain framework manifests 
the reference architecture. 

Forthcoming papers in this series will expand the Hyperledger generalized 
reference architecture to include the following business blockchain components: 
Smart Contract Layer, Communication Layer, Data Store Abstraction, Crypto 
Abstraction, Identity Services, Policy Services, APIs, and Interoperation.

ABOUT HYPERLEDGER 
Hyperledger is an open source 
collaborative effort created 
to advance cross-industry 
blockchain technologies. 
It is a global collaboration 
including leaders in finance, 
banking, Internet of Things, 
supply chains, manufacturing 
and Technology. The Linux 
Foundation hosts Hyperledger 
under the foundation. 
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About the Hyperledger Architecture Working Group 
The Hyperledger Architecture WG serves as a cross-project forum for architects and 
technologists from the Hyperledger community to exchange ideas and explore alternate 
architectural options and tradeoffs. Their focus is on developing a modular architectural 
framework for enterprise-class distributed ledgers. This includes identifying common and 
critical components, providing a functional decomposition of an enterprise blockchain stack 
into component layers and modules, standardizing interfaces between the components, 
and ensuring interoperability between ledgers. 

Introduction
Business blockchain requirements vary. Some uses require rapid network consensus 
systems and short block confirmation times before being added to the chain. For others, 
a slower processing time may be acceptable in exchange for lower levels of required 
trust. Scalability, confidentiality, compliance, workflow complexity, and even security 
requirements differ drastically across industries and uses. Each of these requirements, and 
many others, represent a potentially unique optimization point for the technology.

For these reasons, Hyperledger incubates and promotes a range of business blockchain 
technologies including distributed ledgers, smart contract engines, client libraries, graphical 
interfaces, utility libraries, and sample applications. Hyperledger’s umbrella strategy 
encourages the re-use of common building blocks via a modular architectural framework. 
This enables rapid innovation of distributed ledger technology (DLT), common functional 
modules, and the interfaces between them. The benefits of this modular approach include 
extensibility, flexibility, and the ability for any component to be modified independently 
without affecting the rest of the system.

HYPERLEDGER MODULAR UMBRELLA APPROACH
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Architecture Overview
All Hyperledger projects follow a design philosophy that includes a modular extensible 
approach, interoperability, an emphasis on highly secure solutions, a token-agnostic 
approach with no native cryptocurrency, and the development of a rich and easy-to-
use Application Programming Interface (API). The Hyperledger Architecture WG has 
distinguished the following business blockchain components:

• Consensus Layer - Responsible for generating an agreement on the order and 
confirming the correctness of the set of transactions that constitute a block.

• Smart Contract Layer - Responsible for processing transaction requests and 
determining if transactions are valid by executing business logic.

• Communication Layer - Responsible for peer-to-peer message transport between 
the nodes that participate in a shared ledger instance.

• Data Store Abstraction - Allows different data-stores to be used by other modules.

• Crypto Abstraction - Allows different crypto algorithms or modules to be swapped 
out without affecting other modules.

• Identity Services - Enables the establishment of a root of trust during setup of a 
blockchain instance, the enrollment and registration of identities or system entities 
during network operation, and the management of changes like drops, adds, and 
revocations. Also, provides authentication and authorization.

• Policy Services - Responsible for policy management of various policies specified 
in the system, such as the endorsement policy, consensus policy, or group 
management policy. It interfaces and depends on other modules to enforce the 
various policies.

• APIs - Enables clients and applications to interface to blockchains.

• Interoperation - Supports the interoperation between different blockchain instances. 

In this document, we will explore consensus. The goal of consensus is to generate an 
agreement on the order and to validate the correctness of the set of transactions that 
constitute the block.

Consensus
Consensus is the process by which a network of nodes provides a guaranteed ordering 
of transactions and validates the block of transactions. Consensus must provide the 
following core functionality:

• Confirms the correctness of all transactions in a proposed block, according to 
endorsement and consensus policies.

• Agrees on order and correctness and hence on results of execution (implies 
agreement on global state).

• Interfaces and depends on smart-contract layer to verify correctness of an ordered 
set of transactions in a block.
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Comparison of Consensus Types 
Consensus may be implemented in different ways such as through the use of lottery-
based algorithms including Proof of Elapsed Time (PoET) and Proof of Work (PoW) or 
through the use of voting-based methods including Redundant Byzantine Fault Tolerance 
(RBFT) and Paxos. Each of these approaches targets different network requirements and 
fault tolerance models.

The lottery-based algorithms are advantageous in that they can scale to a large number 
of nodes since the winner of the lottery proposes a block and transmits it to the rest 
of the network for validation. On the other hand, these algorithms may lead to forking 
when two “winners” propose a block. Each fork must be resolved, which results in a 
longer time to finality.

The voting-based algorithms are advantageous in that they provide low-latency finality. 
When a majority of nodes validates a transaction or block, consensus exists and finality 
occurs. Because voting-based algorithms typically require nodes to transfer messages 
to each of the other nodes on the network, the more nodes that exist on the network, 
the more time it takes to reach consensus. This results in a trade-off between scalability 
and speed.

The operating assumption for Hyperledger developers is that business blockchain 
networks will operate in an environment of partial trust. Given this, we are expressly not 
including standard Proof of Work consensus approaches with anonymous miners. In our 
assessment, these approaches impose too great a cost in terms of resources and time to 
be optimal for business blockchain networks.

Table 1 offers an at-a-glance view of the main considerations and pros and cons of 
different business blockchain approaches to reaching consensus.

Permissioned  
Lottery-based

Permissioned  
Voting-based

Standard Proof of 
Work (Bitcoin) 

Speed

Scalability

Finality

TABLE 1. COMPARISON OF PERMISSIONED CONSENSUS APPROACHES AND STANDARD PoW

MODERATE

MODERATE

GOOD

GOOD

GOOD POOR

POOR

GOOD

GOOD
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Consensus and Its Interaction with Other  
Architectural Layers
While there are many ways in which consensus can be achieved, our analysis of 
blockchain platforms suggests that the process shown in Figure 1 is commonly used. 
This is a generalized view, and the different Hyperledger frameworks may choose to 
implement these steps differently.

Hyperledger business blockchain frameworks reach consensus by performing two 
separate activities:

1. Ordering of transactions 

2. Validating transactions  

By logically separating these activities, we ensure that any Hyperledger framework can 
work with any Hyperledger consensus module. 

The first step of the consensus process flow is receiving the transactions from the client 
application. Consensus depends on an ordering service to order transactions. The ordering 
service can be implemented in different ways: ranging from a centralized service, which can 
be used in development and testing, to distributed protocols that target different network and 
node fault models. To enable confidentiality of the transactions, the ordering service may be 
agnostic to the transaction; that is, the transaction content can be hashed or encrypted.

FIGURE 1. GENERALIZED HYPERLEDGER CONSENSUS PROCESS FLOW
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Transactions are submitted via an interface to the ordering service. This service collects 
transactions based on the consensus algorithm and configuration policy, which may 
define a time limit or specify the number of transactions allowed. Most of the time, for 
efficiency reasons, instead of outputting individual transactions, the ordering service will 
group multiple transactions into a single block. In this case, the ordering service must 
impose and convey a deterministic ordering of the transactions within each block.

To validate transactions, consensus depends on the smart contract layer because it 
contains the business logic behind what makes a transaction valid. The smart contract 
layer validates each transaction by ensuring they conform to policy and the contract 
specified for the transaction. Invalid transactions are rejected and possibly dropped from 
inclusion within a block.

We can divide potential validation errors into two categories: syntax and logic errors. For 
syntax errors such as invalid inputs, unverifiable signature, and repeated transaction (due 
to error or replay attacks), the transaction should be dropped. The second category of 
errors is more complex and should be policy driven whether to continue processing or 
not. For example, a transaction that would result in double-spend or versioning control 
failure. We might want to log these transactions for auditing if the policy requires.

The consensus layer uses the communication layer for communicating with the client and 
other peers on the network.

Consensus Properties
Consensus must satisfy two properties to guarantee agreement among nodes: safety 
and liveness.

Safety means that each node is guaranteed the same sequence of inputs and results 
in the same output on each node. When the nodes receive an identical series of 
transactions, the same state changes will occur on each node. The algorithm must 
behave identical to a single node system that executes each transaction atomically one 
at a time.

Liveness means that each non-faulty node will eventually receive every submitted 
transaction, assuming that communication does not fail.

Consensus in the Hyperledger Frameworks
Because business blockchain requirements will vary, the Hyperledger community 
is working on several different consensus mechanisms as well as implementation 
approaches to ensure modularity.

Table 2 provides a comparison of the consensus algorithms used across Hyperledger 
frameworks. Apache Kafka in Hyperledger Fabric, RBFT in Hyperledger Indy, and 
Sumeragi in Hyperledger Iroha use a voting-based approach to consensus that provides 
fault tolerance and finality within seconds. PoET in Hyperledger Sawtooth uses a lottery-
based approach to consensus that provides scale at the cost of finality being delayed 
due to forks that must be resolved.
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Consensus Algorithm Consensus Approach Pros Cons

Kafka in 
Hyperledger Fabric 

Ordering Service

Permissioned voting-
based. Leader does 
ordering. Only in-sync 
replicas can be voted as 
leader. (“Kafka,” 2017).

Provides crash fault 
tolerance. Finality 
happens in a matter of 
seconds.

While Kafka is crash 
fault tolerant, it is not 
Byzantine fault tolerant, 
which prevents the 
system from reaching 
agreement in the case of 
malicious or faulty nodes.

RBFT in  
Hyperledger Indy

Pluggable election 
strategy set to a 
permissioned, voting-
based strategy by 
default (“Plenum,” 2016).   
All instances do 
ordering, but only the 
requests ordered by 
the master instance are 
actually executed.  
(Aublin, Mokhtar & Quéma, 2013)

Provides Byzantine 
fault tolerance. Finality 
happens in a matter of 
seconds.

The more nodes that 
exist on the network, 
the more time it takes to 
reach consensus.
The nodes in the 
network are known 
and must be totally 
connected.

Sumeragi in  
Hyperledger Iroha

Permissioned server 
reputation system.

Provides Byzantine 
fault tolerance. Finality 
happens in a matter 
of seconds. Scale to 
petabytes of data, 
distributed across many 
clusters (Struckhoff, 2016).

The more nodes that 
exist on the network, 
the more time it takes to 
reach consensus.
The nodes in the network 
are known and must be 
totally connected.

PoET in  
Hyperledger 

Sawtooth

Pluggable election 
strategy set to a 
permissioned, lottery-
based strategy by 
default.

Provides scalability and 
Byzantine fault tolerance.

Finality can be delayed 
due to forks that must be 
resolved.

TABLE 2. COMPARISON OF CONSENSUS ALGORITHMS USED IN HYPERLEDGER FRAMEWORKS
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Consensus in Hyperledger Fabric
Consensus in Hyperledger Fabric is broken out into 3 phases:  Endorsement, Ordering, 
and Validation.

• Endorsement is driven by policy (eg m out of n signatures) upon which participants 
endorse a transaction. 

• Ordering phase accepts the endorsed transactions and agrees to the order to be 
committed to the ledger. 

• Validation takes a block of ordered transactions and validates the correctness of the 
results, including checking endorsement policy and double-spending.  

Hyperledger Fabric supports pluggable consensus service for all 3 phases. Applications 
may plugin different endorsement, ordering, and validation models depending on their 
requirements. In particular, the ordering service API allows plugging in BFT-based agreement 
algorithms. The ordering service API consists of two basic operations: broadcast and deliver.

• broadcast(blob): a client calls this to broadcast an arbitrary message blob for 
dissemination over the channel. This is also called request(blob) in the BFT context, 
when sending a request to a service.

• deliver(seqno, prevhash, blob): the ordering service calls this on the peer to deliver 
the message blob with the specified non-negative integer sequence number 
(seqno) and hash of the most recently delivered blob (prevhash). In other words, it is 
an output event from the ordering service. deliver() is also sometimes called notify() 
in pub-sub systems or commit() in BFT systems. 

Multiple ordering plugins are being developed currently, including BFT Smart, Simplified 
Byzantine Fault Tolerance (SBFT), Honey Badger of BFT, etc. For Fabric v1, Apache Kafka 
is provided out-of-the-box as a reference implementation. The application use-cases and 
its fault tolerance model should determine which plugin to use.

FIGURE 2. ILLUSTRATION OF ONE POSSIBLE TRANSACTION FLOW (COMMON-CASE 
PATH) IN HYPERLEDGER FABRIC
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Consensus in Hyperledger Indy
Consensus in Hyperledger Indy is based on Redundant Byzantine Fault Tolerance (RBFT), 
which is a protocol inspired by Plenum Byzantine Fault Tolerance (Plenum). Think of RBFT as 
running several instances of Plenum in parallel. Ordered requests from a single instance called 
the master is used to update the ledger, but the master’s performance in terms of throughput 
and latency is periodically compared to the average performance of other instances. If the 
master is found to be degraded, a view change occurs that appoints a different instance to 
the role of master. Like PBFT, RBFT needs at least 3f+1 nodes to handle f faulty nodes. Figure 3 
shows a network of 4 nodes that can handle 1 faulty node, has 2 PBFT-like instances running, 
one master and one backup. Each node can host one primary (leader) instance. 

Source: (Aublin, Mokhtar & Quéma, 2013)

FIGURE 3. RBFT OVERVIEW

Figure 4 shows a different view of RBFT. Here the client is sending a request to nodes. 
It does not have to send to all nodes because sending to f+1 nodes is sufficient. After 
receiving the client request, the nodes do a dissemination process through PROPAGATE 
in which every other node is made aware of the request. Each primary creates a proposal 
from the received requests called a PRE-PREPARE and sends it to all other nodes. If the 
nodes accept the primary’s proposal, they send an acknowledgement to the proposal by 
a message called PREPARE. Once a node gets a PRE-PREPARE proposal and 2f PREPARE 
messages, then it has sufficient information to accept the proposal and sends a COMMIT 
message. Once a node gets 2f+1 COMMIT messages, then the batch of requests can 
be ordered and added to the ledger since a sufficient number of nodes have agreed 
that a majority of nodes have accepted the proposal. The primary does not require one 
proposal to complete before it can send the next proposal. 
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Hyperledger Indy uses RBFT to handle ordering and validation, which results in a single 
ledger containing both ordered and validated transactions. This is unlike many blockchain 
networks that use a Byzantine Fault Tolerance (BFT) protocol only for ordering. These 
networks leave domain-specific validation to happen after requests are ordered.

Plenum, and therefore RBFT, maintains a projection of the ledger called state. All valid, 
accepted operations performed may change the state, which is stored in a database 
as a collection of variables and their values. The state is kept in a cryptographically 
authenticated data structure called a Merkle Patricia tree, which is specified by Ethereum. 
Hyperledger Indy stores Decentralized Identifiers (DIDs) as state variables with values 
including the current verification key and a few other things. The in memory copy of the 
ledger transactions and resulting state are optimistically updated during the proposal 
phase. The primary is updated while sending the proposal and non-primaries are 
updated while accepting a valid proposal.  The proposal gets ordered, then the ledger 
and the resulting state are committed. If the proposal gets rejected for some reason, then 
the changes made to the ledger and the resulting state are reverted.

This optimistic update is necessary to have multiple proposals being proposed without 
the previous proposals being completely ordered. For example, if the first proposal 
contained a request which was creating a new identity Id1 on the ledger and the second 
proposal contained a request adding an attribute for Id1, then if the state did not reflect 
the existence of Id1, the second proposal would be rejected. So, before the second 
proposal is accepted, the changes in the first proposal should be visible. When changes 
have been proposed, but not yet committed, it’s called an uncommitted change.

Source: (Aublin et al., 2013)

FIGURE 4. RBFT PROTOCOL STEPS
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FIGURE 5. NORMAL TRANSACTION FLOW IN HYPERLEDGER IROHA WITH SUMERAGI
Source: (Aublin et al., 2013)

Consensus in Hyperledger Iroha
Hyperledger Iroha introduces a BFT consensus algorithm called Sumeragi, which tolerates 
f numbers of Byzantine faulty nodes in a network, like all BFT systems. It is heavily inspired 
by the B-Chain Algorithm described by Duan, Meling, Peisert, & Zhang (2014).

As in B-Chain, we consider the concept of a global order over validating peers and sets 
A and B of peers, where A consists of the first 2f+1 peers and B consists of the remainder. 
As 2f+1 signatures are needed to confirm a transaction, under the normal case only 2f+1 
peers are involved in transaction validation. The remaining peers only join the validation 
when faults are exhibited in peers in set A. The 2f+1th peer is called the proxy tail. For 
normal (non-failure) cases, the transaction flow is shown as in Figure 5.

The client, which will typically be an API server interfacing with an end-user client, first 
submits a transaction to the lead validating peer. This leader then verifies the transaction, 
orders it into the queue, and signs the transaction. It then broadcasts this transaction to 
the remaining 2f+1 validating peers.

The order of processing nodes is determined based on the server reputation system 
called hijiri. Hijiri calculates the reliability of servers based on three factors. First, based 
on the time each server registered with the membership service. Second, based on the 
number of successful transactions processed by each server. Third, based on whether 
failures have been detected.



12  

FIGURE 6. TRANSACTION FLOW IN THE CASE OF A SERVER FAILURE IN 
HYPERLEDGER IROHA WITH SUMERAGI

To detect failures, each server sets a timer when it signs and broadcasts a transaction 
to the proxy tail. If there is a failure in an intermediate server and a reply is not received 
before the timer goes off, then the server rebroadcasts the transaction and its signature 
to the next server in the chain after the proxy tail. The case of a failure in the proxy tail is 
shown in Figure 6.

Consensus in Sumeragi is performed on individual transactions and on the global state 
resulting from the application of the transaction. When a validating peer receives a 
transaction over the network, it performs the following steps in order:

1. Validate the signature (or signatures, in the case of multi-signature transactions) of the 
transaction.

2. Validate the contents of the transaction, where applicable. For example, transfer 
transactions must leave the payer’s account with a non-negative balance.

3. Temporarily apply the transaction to the ledger. This involves updating the Merkle root 
of the global state.

4. Sign the updated Merkle root and the hash of the transaction contents. 

5. Broadcast the tuple, which is a finite ordered list of transactions.

6. When syncing nodes with each other, valid parts of the Merkle tree are shared until 
the roots match. 
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Consensus in Hyperledger Sawtooth
Hyperledger Sawtooth facilitates pluggable consensus for both lottery and voting 
algorithms. By default, Hyperledger Sawtooth uses a lottery-based, Nakamoto consensus 
algorithm called PoET. As with Bitcoin’s PoW, PoET uses a lottery for leader election 
based on a guaranteed wait time provided through a Trusted Execution Environment (TEE) 
(Sandell, Bowman, & Shah, 2016). For the purpose of achieving distributed consensus 
efficiently, a good lottery function has several characteristics that have been defined by 
Sandell et al. (2016) as:

• Fairness - The function should distribute leader election across the broadest possible 
population of participants.

• Investment - The cost of controlling the leader election process should be 
proportional to the value gained from it.

• Verification - It should be relatively simple for all participants to verify that the leader 
was legitimately selected.

The current implementation of Hyperledger Sawtooth builds on a TEE provided by Intel’s 
Software Guard Extensions (SGX). This ensures the safety and randomness of the leader 
election process without requiring the costly investment of power and specialized hardware 
inherent in most “proof” algorithms.

Every PoET validator requests a random time to wait from a trusted function before claiming 
leadership. The validator with the shortest wait time for a particular transaction block is 
implicitly elected the leader. The function “CreateTimer” creates a timer for a transaction 
block that is guaranteed to have been created by the TEE. The “CheckTimer” function 
verifies that the timer was created by the TEE and, if it has expired, creates an attestation 
that can be used to verify that validator did, in fact, wait the allotted time before claiming the 
leadership role.

The PoET leader election algorithm meets the criteria for a good lottery algorithm. It 
randomly distributes leadership election across the entire population of validators with a 
distribution that is similar to what is provided by other lottery algorithms. The probability of 
election is proportional to the resources contributed, where resources are general purpose 
processors with a TEE. An attestation of execution provides information for verifying that the 
certificate was created within the TEE and that the validator waited the allotted time. Further, 
the low cost of participation increases the likelihood that the population of validators will be 
large, increasing the robustness of the consensus algorithm. 



14  

Conclusion
In this initial paper, we introduced the modular architectural framework used by all 
Hyperledger projects and explored multiple ways that consensus can be implemented 
within this modular framework. 

Key takeaways include:

1. The overarching Hyperledger design philosophy for permissioned blockchain 
networks follows a modular approach that enables extensibility and flexibility.

2. Within this modular approach, Hyperledger defines common functional components 
and the interfaces between them, which allows any component to be modified 
independently without affecting the rest of the system.

3. The Architecture WG has been and will continue to define the following core 
components for permissioned blockchain networks: Consensus Layer, Smart 
Contract Layer, Communication Layer, Data Store Abstraction, Crypto Abstraction, 
Identity Services, Policy Services, APIs, and Interoperation.

4. The Architecture WG has shared a generalized reference architecture for 
consensus that can be used by any Hyperledger project.

5. Hyperledger Fabric, Hyperledger Indy, Hyperledger Iroha, and Hyperledger 
Sawtooth each manifest the reference architecture principles in unique ways. 
The comparison of consensus algorithms commonly used with these frameworks 
is provided in Table 1, which can be used to quickly determine the strengths and 
weaknesses of algorithms including Kafka, RBFT, Sumeragi, and PoET. 

Forthcoming papers in this series will expand the Hyperledger generalized reference 
architecture to cover all the core components for permissioned blockchain networks. 
The next paper in the series will cover the Smart Contract Layer. If you are interested in 
participating in Hyperledger’s Architecture working group, please visit the Wiki page for 
more information.
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