
In Partnership With:

Addressing Cybersecurity
Challenges in Open Source
Software

The current state of open source software security and methods
to address and improve your cybersecurity posture

Open source software (OSS) has become an integral part of the technology landscape, as inseparable from the digital machinery of
modern society as bridges and highways are from global transportation infrastructure. According to one report, typically 70% to 90%
of a modern application stack consists of pre-existing OSS, from the operating system to the cloud container to the cryptography
and networking functions, sometimes up to the very application running your enterprise or website. Thanks to copyright licenses
that encourage no-charge re-use, remixing, and redistribution, OSS encourages even the most dogged of competitors to work together
to address common challenges, saving money by avoiding duplication of effort, moving faster to innovate upon new ideas and adopt
emerging standards.

However, this ubiquity and flexibility can come at a price. While OSS generally has an excellent reputation for security, the
communities behind those works can vary significantly in their application of development practices and techniques to reduce the
risk of defects in the code, or to respond quickly and safely when one is discovered by others. Often, developers trying to decide
what OSS to use have difficulty determining which ones are more likely to be secure than others based on objective criteria.
Enterprises often don’t have a well-managed inventory of the software assets they use, with enough granular detail, to know when or
if they’re vulnerable to known defects, and when or how to upgrade. Even those enterprises willing to invest in increasing the
security of the OSS they use often don’t know where to make those investments, nor their urgency relative to other priorities.

However, fighting security issues at their upstream source — trying to catch them earlier in the development process, or even
reduce the chances of their occurrence at all — remains a critical need. We are also seeing new attacks that focus less on
vulnerabilities in code, and more on the supply chain itself — from rogue software that uses “typosquatting” on package names to
insert itself unexpectedly into a developer’s dependency tree, to attacks on software build and distribution services, to
developers turning their one-person projects into “protest-ware” with likely unintended consequences.

To address the urgent need for better security practices, tools, and techniques in the open source software ecosystem, a collection
of deeply invested organizations came together in 2020 to form the Open Source Security Foundation (OpenSSF), and chose to house
that effort at the Linux Foundation. This public effort has grown to include hundreds of active participants across dozens of
different public initiatives housed under 7 working groups, with funding and partnership from over 75 different organizations, and
reaching millions of OSS developers. This report presents analysis that we intend to use to help support that effort. You can see a
complete copy of my prepared testimony at: Testimony to the US House Committee on Science and Technology - Open Source Security
Foundation (openssf.org).

Brian Behlendorf

General Manager, Open Source Security Foundation

The Linux Foundation

01

02

5.1

68.8

97.8

Increased
incentives

59%

SCA and  
SAST tools

73%

11%

24%

18%

49%

More intelligent
tools

Average number of outstanding,
critical vulnerabilities in an
application.
Ranges between 2.6 and 9.5 based on programming language.

Ranges between 25 and 174 based on programming language.

Average dependencies per project.

Average number of days
it takes to fix a
vulnerability.

by employer is the #1
approach to improving OSS
resourcing.

of organizations report

their OSS is somewhat or
highly secure.

are the #1 and #2 tools used to
address security concerns.

of organizations are searching  
for best practices to improve
their software security.

Average increase to an
organization’s security
score in 2022.

of organizations are
confident in the security of
their direct dependencies.

of organizations are confident
in the security of their
transitive dependencies.

of organizations have  
a security policy that
addresses OSS.

are the #1 way organizations
intend to improve supply chain
security.

Introduction

03

Open source software (OSS) has had a tremendous impact on the
development and distribution of the software we depend on today.
Through its collaborative and open way of both developing and
sharing software components, OSS has served as a key engine for
innovation and encouraged the widespread reuse and sharing of
core software components. Today, nearly all applications are
composed of components dependent upon other components, creating
a supply chain that involves hundreds of components and
multitiered dependencies.

Organizations of all sizes are heavily reliant on software, and
much of that software supply chain consists of open source
software components. Because of this, open source software has
cybersecurity implications: the software supply chain is an
attractive entry point for people and organizations interested in
theft, disruption, or exploitation for economic or political
gain. The attack surface today is changing from those in
traditional cybersecurity threat models. Defects in small
libraries that are widely used across the software ecosystem can
cause systemic risk, as we’ve seen with incidents such as
Log4shell.

The tremendous benefits and prevalence of OSS in organizational
software, combined with the vulnerability of the OSS software
supply chain, puts us at a crossroads. Organizations and
companies that use open source software need to become more aware
of what dependencies they are using, proactively and regularly
monitoring all components for usability, trustworthiness, and
vulnerabilities. Ultimately, open source software is a two-way
street: consumers of open source software must contribute back to
the OSS communities to ensure the health and viability of the
dependencies they rely on. Merely using open source software,
without contributing back, is not enough. What is required is
both to 1) incorporate the nature of OSS dependencies into
standard cybersecurity and development practices and 2)
contribute back to the OSS communities that organizations rely
on.

Security challenges

Addressing the security of open source software components
requires a different approach from traditional approaches of
securing proprietary, vendor-supported software. The more loosely
structured and community focused nature of OSS development
presents a more challenging environment for addressing software
security. The distribution of OSS projects is bookended by a
small number of large visible projects (like the Linux kernel and
Kubernetes) to a very large number of small projects. Smaller
projects typically have fewer contributors and resources, and are
therefore more likely to adopt a minimalist approach to
development and security.

04

A worldwide survey was fielded in April 2022, targeting the
following roles

 Individuals who contribute to, use, or administer OS

 Maintainers, core contributors, and occasional contributors to
OS

 Developers of proprietary software to use OS

 Individuals with a strong focus on software supply chain
security
 

The survey included four sections

 Screening questions and demographic

 OSS security perspectives. Sample size is 539 and margin of
error (MoE) is +/- 3.6% at a 90% confidence level

 OSS best practices for secure software development. Sample size
is 72. Only OSS maintainer and core contributors were invited
to complete this section of the survey. Because of the
technical detail that was characteristic of this section, it
was not addressed as part of this report and instead will be
discussed in a separate report to be published in 2022 Q3

 Improving OSS security. Sample size is 433 and margin of error
(MoE) is +/-4.0% at a 90% confidence level.

For more information about this research approach and sample
demographics, see the methodology section of this paper.

The data provided by Snyk is based on over 1.3 million projects
and was collected from April 1, 2021 until March 31, 2022. Snyk’s
efforts were primarily focused on understanding how five key
languages/ecosystems (.Net, Go, Java, JavaScript, and Python) are
influencing the complexity of the software supply chain. This
data was gathered from the use of Snyk Open Source, a static code
analysis (SCA) tool free to use for individuals and open source
maintainers.

Research approach

This report focuses on OSS security perspectives and how to
improve OSS security and sustainability.

Research began in March 2022 with fifteen interviews of open
source software maintainers and cybersecurity experts. These
qualitative interviews helped to shape the scope of the research
and the design of the quantitative survey instrument.

Source: 2022 Open Source Supply Chain Security Survey.

05

Open source
software security
perspectives

Initial questions in this survey were designed to understand
organizational commitment to security that covers OSS development
and use and beliefs about the security of the OSS and its
dependencies in use. Responses to these questions suggest that
organizations collectively have been slow to make software
security a priority.

Many organizations do not have a security policy  
that covers OSS

One of the most startling findings of this research, as shown in
Figure 1, is that only 49% of organizations have a security
policy that covers OSS development or use. 34% of organizations
indicate that they do not have a security policy for OSS
development and usage, and 17% of respondents were not sure if
their organization had a plan or not. If we prorate this 17%
based on the existing distribution of responses, the number of
organizations with a security policy covering OSS rises from 49%
to 59%, and those without a policy rise from 34% to 41%.

Do you have an open source security policy in place for
open source development or usage? (select one)

Figure 1: Organizations with a security policy covering OSS

Yes No Don’t know

49%

34%

17%

TotalNoYes

06

Having a security policy covering OSS indicates that you have a
security action plan that includes the many OSS components in
use. Without a software security policy, organizations may expose
themselves to a significant amount of financial and reputational
risk because they may not be evaluating software before its
inclusion and/or may not be prepared for the inevitable updates
due to software vulnerabilities (OSS or not).

Note that we intentionally did not have any special requirements
on how the security policy covering OSS was stated. Some
organizations have a single policy on software, and then only
have specific statements for OSS in the relatively few cases
where OSS would be sensibly different. This would be an
application of the so-called “Hellekson’s Law” (“a more specific
policy can be improved for the general case by removing
delimiters that narrow the policy scope,” e.g., deleting “open
source” from an “open source software” policy typically improves
it). For our purposes this is fine. We simply let the respondents
identify whatever applied to their organization.

The one benefit of the distribution shown in Figure 1 is that we
can statistically compare and contrast the characteristics of
organizations with a security policy against those without one.
Understanding these comparative differences helps us describe the
OSS security journey that organizations are on.

Small organizations shoulder disproportionate  
OSS security risk

This survey included organizations of various sizes (based on the
number of worldwide employees). The survey sample was distributed
by organization size as follows: small organizations (44%, 1-499
employees), medium organizations (20%, 500-4,000 employees),
large organizations (35%, 5,000+ employees), and 1% don’t know or
are not sure.

The measure of security policy covering OSS by organizational
size is shown in Figure 2. Immediately noticeable is the
difference in distributions between organizations with 1-499
employees and those with 500 employees or more. Just 41% of small
organizations have an OSS security policy, compared to 56%-57% of
larger organizations. This significant difference indicates that
small organizations behave differently than larger organizations
when it comes to OSS security policy adoption.

07

One reason that small organizations are OSS security challenged
is economies of size. Small organizations have small IT staff and
budgets, and the functional needs of the business often take
precedence so that the business can remain competitive. Lack of
resources and time were the leading reasons why organizations
were not addressing OSS security best practices.

While it is disappointing that 44% of small organizations do not
have an OSS security policy, an additional concern is that close
to 30% of larger organizations also do not have an OSS security
policy. Small organizations can rationalize increased financial,
reputational, and legal risk, but this becomes tenuous for medium
organizations and insupportable for large organizations with
5000+ employees. Medium and large organizations likewise complain
about not enough having resources or time to address OSS security
needs. Surprisingly, a lack of awareness about security best
practices is more often identified by large organizations as a
reason for not attending to OSS security needs than lack of time.

Figure 2: A distribution of OSS security policy by organization size

1 to 499 Emp 500 to
4,999 Emp

5,000+
Emp

41%
44%

16%
15%

17%

28%
27%

57%
56%

Yes No Don’t know

Do you have an open source security policy in place for open
source development or usage? (select one) by Enterprise size

Source: 2022 Open Source Supply Chain Security Survey.

08

A simple weighted average of all responses shows a composite
score of 65 for all organizations, which is a poor grade.
Organizations with an OSS security policy score a 70, and
organizations without a policy score a 58.

Many Organizations score poorly on OSS security

We asked organizations how secure their open source software is
today. Responses to this question are shown in Figure 3. Overall,
59% of organizations feel their OSS is either somewhat secure or
highly secure. For organizations with an OSS security policy,
this value rises to 70%. It falls to 45% for organizations
without a security policy.	

Figure 3: OSS security today

Highly Insecure Somewhat Insecure Neither Insecure  
or Secure

Somewhat Secure Highly Secure Don’t Know

Total

No

Yes

5%

15%
12% 12%

23%

16%

38%

48%

43%

7%

22%

16%

13%

5%

10%
11%

3%
4%

65
Weighted Avg of
responses

Score range: 0 -100

How secure is your open source software today? (select
one) by Do you have an open source security policy in
place for open source development or usage?

Source: 2022 Open Source Supply Chain Security Survey.

How secure is your process for developing or
using open source software today? (select
one) by Do you have an open source security
policy in place for open source development
or usage?

09

The similarity of this distribution when compared to Figure 4
also yields a weighted average of 65 and organizations with the
security policy score 71 and organizations without a policy 58.

Across organizations, there is a belief that the security of OSS
development and use will improve to a weighted average score of
72 by the end of 2022 and 77 by the end of 2023. Later in this
report, you will see that an organizational cornerstone of their
OSS security strategy is for the vendor community to provide
security tools with greater intelligence. Other key elements of
their OSS security strategy include a more complete understanding
of best practices for secure software development and greater CI/
CD automation to eliminate manual actions and opportunities that
expose the pipeline to security risks.

Highly Insecure Somewhat Insecure Neither Insecure  
or Secure

Somewhat
Secure

Highly Secure Don’t Know

2%
5% 3%

14%

19%

11%

16%

7%

27%

17%

13%

3%

8%

40%

46%

42%

20%

9%
Total

No

Yes

The secure development of OSS is also at risk

Similarly, Figure 4 shows how secure the process for developing
or using OSS is today. Using the same responses shown in Figure
3, the results are nearly identical. Across all organizations,
59% believe that their development processes are somewhat secure
or highly secure. This value rises to 73% for organizations with
an OSS security policy and falls to 47% for organizations
without.

Figure 4: Security of OSS development and use today

65
Weighted Avg of
responses

Score range: 0 -100

Source: 2022 Open Source Supply Chain Security Survey.

10

Who drives OSS security policies?

Figure 5 superficially creates a conundrum: how do organizations without a top-down OSS security policy have people responsible for defining OSS
security policy? Additionally, not having an OSS security policy doesn’t mean that groups aren't addressing OSS security in ad hoc ways.

Across organizations, just 31% vest responsibility for defining an OSS security policy in the hands of a CISO and/or security team. The second
leading choice of multiple teams at 16% suggests that instead of policy being established by a CISO, it evolves across the Software Development
Life Cycle (SDLC) based on the focus of the team. Because a security focus should exist across the CI/CD pipeline, multiple teams are needed to
implement OSS security policy. Reliance on open source maintainers at 13% overall can be workable if the maintainers are either part of the
organization or known to the organization - but it seems recklessly optimistic to put trust in OSS projects with unknown provenance.

RR®

Security team and /or
CISO

Multiple teams Open source maintainers No one Developer or care
contributor

Operations or Bite
Reliability Engineers (SREs)

Contributors from
other teams

Don’t

Know

19%

42%

31%

11%

22%

10%

16%

13%

30%

1%

12%

17%

8%

12%

3%

7%

5%

2%2% 2%

8% 8%

3%

16%

Figure 5: Responsibility for OSS security policies

TotalNoYes Who is responsible for defining your open
source security policy? (select one) by Do you
have an open source security policy in place for
open source development or usage?

Source: 2022 Open Source Supply Chain Security Survey.

11

What is known is that organizations are not well-positioned to
manage their vulnerabilities. Only one response in Figure 6
indicates that organizations are confident in the security of
their direct dependencies.

Figure 6: Vulnerability concerns across direct dependencies

Organizations are not effectively managing the security of
their dependencies

Dependencies are a characteristic of modern development. Direct
dependencies are typically components or services called directly
by your code. Indirect or transitive dependencies are essentially
dependencies of your dependencies (in typically many tiers).

Vulnerabilities exist in component code for many reasons.
Contributing factors include the programming language used, the
CI/CD process in use, the education and skill of the developer in
developing secure software, and the scope of testing.
Complicating matters is that vulnerability management is not a
perfect science. Vulnerability scanning normally identifies many
false positives based on the information available to the
scanning tool. Conversely, an actual vulnerability in a component
may not matter if the code linked to the vulnerability is never
executed and/or will only provide trusted data to the vulnerable
code.

Direct
dependencies are
easy to track but
we struggle with
indirect
dependencies

We don’t have good
controls to address
this & it concerns
me

We have strong
controls & I’m
confident in the
security of our
direct
dependencies

We don’t have
good controls
to address this
but it doesn’t
concern me

Don’t Know

TotalNoYes

33%

43%

37%

42%

16%

27%

9%

36%

24%

10%

2%

5% 5%
4%

7%

The percentages in Figure 5 are especially revealing. Across
organizations with an OSS security policy, 80% vest the
definition of an OSS security policy with the CISO/security team,
multiple teams, or open source maintainers. This contrasts with
organizations without an OSS security policy where 40% of these
same groups are involved with OSS security in some capacity.

Perhaps one positive indicator in Figure 5 is that only 30% of
organizations without an OSS security policy admit that no one is
addressing OSS security. This means that 70% of these
organizations are addressing OSS security in part through ad hoc
means, suggesting that organizations without an OSS security
policy are not completely adrift and have some grassroots
activities to address OSS security needs.

How concerned are you that the direct dependencies your
software relies on might be malicious or compromised?
(select one) by Do you have an open source security policy
in place for open source development or usage?

Source: 2022 Open Source
Supply Chain Security Survey.

12

Snyk - Dependencies drive complexity

Dependencies are one of the key components driving much of the
conversation about the software supply chain. Professionals in
both development and security teams are increasingly aware that
securing their enterprise does not depend entirely on their
organization. Instead, we are having to look further and further,
down the rabbit hole of “Where did this code come from?” It’s
hard enough to understand where everything originated when you’re
trying to test code written in-house. When you add dependencies
two, three, or more levels deep, it becomes daunting to even
consider the problem.

The libraries we call in our code, the code snippets we pull from
the internet, and the tools we include in container
configurations are all examples of direct dependencies. In each
of these cases we are relying on third-party code explicitly to
fulfill a specific need or purpose.

Measuring the number of dependencies per project, therefore,
makes a good starting point for understanding how complex the
problem of tracking dependencies really is. As shown in Figure 7,
the average number of dependencies per project stretches from
Python, with 25 dependencies per project, to JavaScript’s 173 per
project.

Across all organizations, only 24% have confidence in the
security of their direct dependencies. This value rises to 36%
for organizations that have an OSS security policy but falls to
just 9% of organizations without such a security policy.
Organizations reporting that dependencies are easy to track (37%)
may be correct in understanding their dependencies, but this
doesn’t mean that these dependencies are collectively secure.

49

56

40

174

25

Average dependencies per project

.Net

Does that mean JavaScript is inherently more complex than .Net
(49 dependencies), Go (56 dependencies), or Java (40
dependencies)? Not necessarily. In the case of JavaScript, each
dependency often has a single purpose and small scope, rather
than a library that fulfills multiple purposes with a large
scope.

Neither approach is more or less secure than the other, but
knowing which dependencies you rely on (and how trustworthy they
are) is an important part of vulnerability management. Sadly,
only 24% of the respondents in this survey felt they had strong
controls in place to handle the security of their dependencies.

Figure 7: Average dependency count per project by language

Go Java JavaScript Python

Source: 2022 Snyk user data.

13

Recent efforts by the US Government to encourage, and even mandate, organizations to create a Software Bill of Materials (SBOM) is evidence
of how important it is to have a handle on dependencies. Tracking direct dependencies is a significant issue by itself. Indirect, or
transitive, dependencies mark the real start of complexity. Each of the libraries referenced in a project incorporates additional code to
perform its own function, and each of those third-party libraries may rely on other libraries as well. Organizations who want a complete
accounting of their transitive dependencies should be requiring SBOMs from their suppliers and investing in tools to consume these SBOMs.

Figure 8 is patterned directly after Figure 6, except that it focuses on transitive dependencies. Transitive dependencies are objectively
more difficult to evaluate as the level of dependency increases. The result is that fewer organizations believe that their transitive
dependencies are secure.

We don’t have good controls to
address this and it concerns me

Direct dependencies are easy to
track but we struggle with indirect
dependencies

We have strong controls & I’m
confident in the security of our
indirect dependencies

We don’t have good controls to
address this but it doesn’t
concern me

Don’t Know

How concerned are you that the indirect (transitive)
dependencies your software relies on might be malicious
or compromised? (select one) by Do you have an open
source security policy in place for open source
development or usage?

Source: 2022 Open Source Supply Chain Security Survey.

49%

30%

37%

30%

35%

5%

27%

18%

10%

2%

5%
7%6%

8%

Figure 8: Vulnerability concerns across transitive dependencie

TotalNoYes

32%

14

A large part of the value of SCA tools is finding where
vulnerabilities are being introduced by the use of known bad
libraries. Is your code incorporating an older version of a library
with known vulnerabilities? Is the package still maintained or is it
abandoned? Did you accidentally get a library pretending to be the
one you actually wanted? These are just a few of the potential
issues that could get a package flagged.

Knowing the number of vulnerabilities in your own project helps you
understand how your efforts compare to global numbers. Organizations
that see data far different from the baseline number of
vulnerabilities in a project can investigate the causes of a
disparity. It could be as simple as different ways of measuring the
same metric. On the other hand, the difference in numbers could
indicate poor coding practices or a large number of old libraries
being part of a standard. Without policies and standards that
require vulnerability tracking, you may never know.

Figure 8 shows that just 18% of organizations are confident in the
security of their transitive dependencies. Once again, this value
rises to 27% for organizations that have an OSS security policy but
plummets to just 5% for organizations without a security policy.

A recent discussion with David A. Wheeler, a leading authority on
OSS security, yielded this insight, “I think many organizations
often don't update their OSS software, even when the older version
of the OSS has widely-known vulnerabilities. That’s not unique to
OSS, many organizations also often don’t update old versions of
proprietary software with widely-known vulnerabilities.”

Snyk - Dependency creates vulnerability

How many vulnerabilities are there in my project? We estimated this
by totaling known vulnerabilities in a particular project combined
with the known vulnerabilities of its dependencies (presuming that
the vulnerabilities in the dependencies were exploitable). The .Net
projects in our data had 23 vulnerabilities per project on average,
with Go at 34, Java at 90, JavaScript having 47, and Python at 36.
This covers both errors introduced in development and
vulnerabilities in transitive dependencies. According to Snyk’s
data, approximately 40% of all vulnerabilities are from these
transitive dependencies. We further broke down the count of
vulnerabilities per project in Figure 9 to highlight the effect of
severity by language.

15

5.6
9.5

3.3 4.5
2.6

6.1

15.3

28

21

11.7

9.8 6.3

47.6

18.2

10.2

4.8
7.4 7.4 5.1

20.4

Critical

Medium

High

Low

Tracking vulnerabilities introduced by transitive dependencies is one of the hardest

challenges in DevOps today. Think about a project that has fifty dependencies; if the

average project has five critical vulnerabilities, just the first level of dependencies

could lead to 200+ critical vulnerabilities. Each layer down expands the problem

dramatically. Luckily, most vulnerabilities are tightly constrained by the factors

needed to exploit them.

Figure 9: Average count of vulnerabilities by language and severity

Vulnerability Severity

.Net.Net

.Net.Net

GoGo

GoGo

JavaJava

JavaJava

JavaScriptJavaScript

JavaScriptJavaScript

PythonPython

PythonPython

Source: 2022 Snyk user data.

How do you find out about vulnerabilities in your dependencies? (select all that apply) by Do
you have an open source security policy in place for open source development or usage?

16

How organizations are addressing and
prioritizing their cybersecurity needs

A key finding of this research is that security, as it applies to OSS, is a rapidly evolving domain. Each of the primary threat vectors (source
threats, build threats, and dependency threats) identified in the SLSA (Supply Chain Levels for Software Artifacts) model will require multiple
actions on the part of most organizations to address. However, because OSS security is also rapidly evolving, increased functionality and tool
consolidation should help reduce the complexity that organizations face in addressing software supply chain security needs.

This section of the report describes how organizations are addressing how vulnerabilities in code are found, how security of OSS components is
evaluated, what security-focused tools are being used, and what security-related activities are most important.

Source: 2022 Open Source Supply Chain Security Survey.

Industry
vulnerability
notifications

Automated
monitoring of

packages for known
vulnerabilites

Notifications form
package maintainers

Industy blogs and
news site

Through an external
security audit

We find out when they
are exploited in the wild

Trust groups Hackers Don’t

Know

52%

60%

53%

38%

60%

40%

46%
49% 47% 47%

43% 43%

16%
20% 19% 18%

13% 15%

8%
14% 11%

4%6% 6%
11%

6%
10%

Figure 10: Finding vulnerabilities in your dependencies

TotalNoYes

17

Organizational approaches to identifying vulnerabilities in
dependencies

A common question in addressing OSS security is how to
comprehensively identify vulnerabilities across your dependencies.
Figure 10 shows that there are four commonly used techniques to
identify vulnerabilities. The leading approach practiced by 53% of
organizations is to subscribe to one or more vulnerability catalogs
from CISA (US-CERT), NIST (NVD), MITRE (CVE), security product &
service vendors, and/or catalog aggregators (like FIRST) that
aggregate content from leading worldwide sources. These
subscriptions have the advantage of pushing vulnerability
notifications to their subscribers.

The second leading approach is automated monitoring — or scanning
of packages for known vulnerabilities — and is practiced by 49% of
organizations. One challenge with this approach is that it’s often
difficult to map vulnerability reports to the component(s)
containing the vulnerabilities. For example, there may be a
vulnerability reported in some component foo, but often there are
many components and forks named foo so users often can’t be
confident when a report is relevant. While it’s a best practice to
scan code formulaically based on time, changes to the code base and
the identification of relevant vulnerabilities, a comprehensive
approach to this technique is still on the horizon.

Notifications from package maintainers are leveraged by 47% of
organizations and can provide a conduit to keep packages updated
when supported by maintainers. Industry blogs and news sites are
used by 43% of organizations and can facilitate the timely delivery
of information for a better sense of importance.

Figure 11:  
Average time to fix by language

Snyk - How long will it take to fix?

Once a vulnerability has been identified, the next logical question is
“How long is this going to take to fix?” The answer is all too often, “I
don’t know. It’s complicated.” Unsurprisingly, the question becomes even
more complex when we apply it to the software supply chain. Our
dependence on third-party code, especially transitive dependencies,
often make that question difficult or impossible to answer.

Looking at the average time to fix by language in Figure 11, we see that
Snyk’s data shows that Go has the best time to fix at 49 days, while
.Net is the obvious laggard at 148 days to fix a vulnerability. While
some maintainers might be able to fix vulnerabilities in days or hours,
there have been a few vulnerabilities that took years to remediate.

148

49

92

118

82

.Net Go Java JavaScript Python

Source: 2022 Snyk user data.

15%

How do you find out about security vulnerabilities in your code?
(select all that apply) by Do you have an open source security
policy in place for open source development or usage?

TotalNoYes

28%

50%

39%

23%

43%

33%
27%

35%
30% 28%

33%
29% 27%

30%
27%

23%

29%
25% 22%22% 22% 24%

15% 14% 11%

3%
8%

8%
2%3% 3% 4% 5% 6%

18%

18

We expect that popularity and awareness influence the time to fix.
A popular project is more likely to attract other collaborators,
and additional collaborators can speed up incident response time.
In addition, if a project is popular, awareness by users (including
via technical press news) is likely to be larger.

A popular project can affect a significant portion of all projects.
As an example, the Spring Framework library is found in 9% of all
Java projects. The team responsible for Spring Framework responded
quickly to fix the Spring4Shell remote code execution vulnerability
when it was identified in the spring of 2022. But what if that
vulnerability had existed in a less responsive yet popular package?

Organizational approaches to identifying  
vulnerabilities in code

Finding security vulnerabilities in code requires multiple
approaches, much like finding vulnerabilities in dependencies.
Figure 12 identifies the leading ways that developers find security
vulnerabilities. The leading approach used by 39% of organizations,
of the options included in the survey, is to use a SAST (Static
Application Security Testing) tool. SAST tools are immensely useful
during development because they can be configured to run
automatically as part of a CI (continuous integration) process and
can often identify specific line(s) of code responsible for a
vulnerability.

Figure 12: Finding vulnerabilities in your code

We find them in
CI when a SAST
tool runs

We find them
when using

Software
Composition

Analysis (SCA)
tools or services

We find them in
our IDE using an

extension for
static code

analysis

They get
identified

during peer
review

Publication in
the National
Vulnerability
Database

We use a
command-line
tool to detect them

Through an
external

security audit

We find out
when they

are exploited
in the wild

Bug bounties
help disclose

them

We don’t Other Don’t Know

Source: 2022 Open Source Supply Chain Security Survey.

19

The second leading approach practiced by 33% of organizations,
among the survey options, is to use an SCA (software composition
analysis) tool. Use of these tools can be automated, and they
typically address manifest scanning and binary scanning to identify
known security vulnerabilities, licensing issues, or quality
problems. While this capability is more closely associated with
finding vulnerabilities in dependencies, including SCA in the build
process helps OSS security activities to shift left.

Finally, a SAST tool can be used within an IDE providing the
developer with a more immediate, hands-on, and configurable
approach to manual security testing. What this approach lacks in
automation is more than compensated for in direct and timely
developer involvement. Figure 12 shows that 30% of organizations
leverage this approach.

Although just 29% of organizations use peer review to help identify
vulnerabilities in code, peer review and a reliance on
multifunctional teams is a best practice and cornerstone of agile
development.

Although this particular survey question did not offer tool choices
other than SCA and SAST, Figure 14 does and confirms the leading
popularity of SCA and SAST tools.

Snyk - Dependencies in the real world

When talking about direct and transitive vulnerabilities, the
actual pervasiveness of transitive vulnerabilities is easy to
overlook or dismiss. As observed earlier, nearly 40% of the
vulnerabilities we detect originate in third-party code. Two
examples of recent, high profile vulnerabilities, Log4Shell and
Spring4Shell, give us an opportunity to compare the nature of
direct vs. transitive dependencies in the real world.

Last Christmas, Log4Shell was the bane of security teams and
developers across the globe. The log4j-core project has been used
extensively to enable logging in millions of projects. Because of
this, nearly 52% of the vulnerabilities we detected were present
because of a direct dependency on the log4j-core code base. (It’s
important to note that we counted direct dependencies first, so a
project with both direct and indirect dependencies would be counted
as direct.)

In contrast to Log4j, over 90% of the Spring Framework core was
transitive, called by code one layer or more removed from the
developer. The Spring Framework can be described as the ‘plumbing
of enterprise applications’, which helps explain why it’s a
transitive dependency so often. This is a very common example of
how vulnerable code gets incorporated into projects, and why it’s
important to track transitive vulnerabilities.

20

Figure 13: Reviewing the security of OSS packages

Prerequisites to using OSS

Using open source components can help to reduce cost, speed time to
market, and free staff up to engage in more innovation and value-
added activities. There is no “right way” to evaluate the security
of OSS packages, but Figure 13 indicates that on average
organizations use three of the approaches listed.

The most common approach used by 44% of organizations is to have
developers examine source code. A review of source code can speak
volumes about the quality of the code, which is highly correlated
with its security.

A second approach relied on by 40% of organizations is to assess
the community that supports the project or component. An active
community and an organized approach to contribution and
maintainership are seen as positive signs for a project.

The third most popular strategy, observed at 36% of organizations,
is using third-party tools to help developers find and vet
components.

A variety of additional manual activities are used by
organizations, including reviewing the frequency of releases/
commits (35%), analysis of registry/package manager information
(33%), and reviewing usage statistics such as repository ratings or
download statistics (30%). These help establish the viability and
commitment of the community to the component.

How do you check the security of the open source packages
that you use? (select all that apply)

44%

40%

9%

36%

3%

35%

30%33%

28%

17%

11%

We use tools
to examine
its source
code

We ask
others if
they
believe the
security of
the project
is adequate

We check
that the
project has
an active
community

We don’t
check it

We use a
tool like Snyk
Advisor,
Libaries.io, or
similar tools
to serach for
open source
packages

Don’t KnowWe look at
the
frequency
of
releases/
commits/
etc.

We use the
information
in the
registry or
package
manager

We look at
repository
ratings or
package
downloads
statitics

We
manaually
review/
inspect its
source
code

We check  
that the
project has  
a responsible
disclosure
policy (such
as a
SECURITY.md)

Source: 2022 Open Source  
Supply Chain Security Survey.

21

Using multiple security testing tools is an OSS best practice

On average, organizations in the study used between two and three
security testing tools. Using third-party tools can significantly
improve your OSS security posture because of their scope, scalability,
automation potential, and coverage across the SDLC. As budgets,
resources, and time allows; using more tools can be advantageous since
they all add value in different ways.

Figure 14 shows that preference is higher for SCA tools (47%) than for
any other tool category. The ability of SCA tools to identify
vulnerabilities and license compliance across an organization’s
portfolio of components and dependencies, in a highly automated way,
is immensely valuable.

Other than SCA tools, additional choices become complex based on the
organization’s approach to DevOps and preferences regarding security
testing. SAST tools (37%), IaC tools (36%), and web application
scanners (32%) all effectively compete for developer and security team
attention. Web application scanners and fuzz testing tools together
make up the dynamic application security testing (DAST) tool domain.
Realistically, the use of both SAST and DAST tools makes sense because
both help organizations find vulnerabilities. However, IaC tools are
invaluable in helping to script and automate CI/CD activities,
eliminating many of the manual and ad hoc activities that consume time
that could be better spent elsewhere.

An honorable mention goes out to the remaining tools on the list. 
Some of these tools are relatively new, but each of them offers a
unique value proposition that adds value to improving OSS security.

Examining the tool use profiles of organizations with a security
policy versus those without provides an overview of where
organizations often start their OSS security journey, and what this
journey looks like as it matures.

Software Composition
Analysis (SCA) tools

Static Application
Secuirty Testing

(SAST) tools

Infrastructure as
Code (IaC) tools

Web Applications
Scanners

Security Test
Cases in
software
quality testing

Infrastructure as
Code scanners

Fuzz Testing
tools

Threat modeling
tools

Cloud Secruity
Posture Mgmt
(CSPM)

Other Don’t Know

Figure 14: Security tools in use when developing OSS

What security tools do you regularly use when developing
open source software? (select all that apply) by Do you have
an open source security policy in place for open source
development or usage?

TotalNoYes

40%

54%

26%

48%

37%

30%

41%

25%

39%
32%

16%

31%

24%

9%
15%

8%
17%

13%

3%

15%
9% 7%

11%

9%

47%

3%4% 4%

36%

22%

9%

16%

Source: 2022 Open Source Supply Chain Security Survey.

20%

22

The most important ways to improve OSS security

The data in Figure 15 is likely the most important collection of key
findings in this report. When asked which of the following
activities are important to improving the security of OSS,
organizations were permitted to give multiple responses.

The most important activity — confirmed by 59% of organizations —
identified a desire to have vendors add increased intelligence to,
and to be responsible for, security tooling. There are two ways to
interpret what this means. The first is that end user organizations
view the vendor community as a force multiplier, because more
intelligent tools can ease the burden on developers or security
professionals in exchange for licensing fees. Organizations and
vendors both perceive this as a win-win scenario assuming
competitive market dynamics. An alternative way to interpret this is
that end-user organizations are struggling to understand how to
address security concerns and welcome the opportunity to share/grant
this responsibility to vendors and service providers who have more
extensive expertise.

Another way to look at this is that end user organizations have
scarce resources, and more intelligent tools are expected to provide
higher value in a transparent way (meaning having no or
inconsequential impact on developer productivity). This is the most
seamless way to improve software security without material changes
to process models.

The second most important activity is to source comprehensive best
practices/certifications for secure software development (cited by
52% of organizations). The strong interest by end user organizations
in best practices for secure software development is exciting to
see. This suggests that these organizations are invested in
understanding how to address OSS security. The good news is that
there are already several trusted sources who can address this need

 There are a variety of sources to identify best practices/
certifications for evaluating projects themselves. This includes
the OpenSSF Best Practices badge, the OpenSSF Scorecards project,
the CNCF paper on best practices for supply chain security, and
SLSA (<https://slsa.dev>)

 This also suggests an interest in encouraging developers to learn
best practices & acquire certifications. The good news is that
these are available. For example, OpenSSF’s developing secure
software (LFD121) provides both a training course and
certification of completion for individuals who pass the final
exam. This course is sponsored by the OpenSSF which is part of
the Linux Foundation.

23

59%

52%

30%

49%

28%

49%

27%

38%

25%

41%

25%

33%

17%

32% 32%

2%
5%

Added
intelligence to
existing
software
security tools
(SAST, DAST,
SCA, SBOMs,
IaC scanners,
CSPM)

Identification
of mission-
critical
software to be
hardened
against attack

Comprehens
ive best
practices/
certification for
secure
software
development

Cryptographic
signatures

More
automation to
eliminate
pathways to
compromise
security and
reduce
developer
fatigue

Use
standardization
to reduce the
complexity and
difficulty in
addressing open
source software
security

Security
audits

Use of
memory safe
programming
languages

Increased
incentives by
employers to
contribute to
open source
projects

Verification
through the
use of
reproducible
builds

Peer review
of source
code

Use of
SBOMs

Required
use of MFA
by
developers
and
releasers

Globally unique
identification of
specific
software
components/
releases

Vulnerability
reporting
system that is
low-touch and
low-latency

Other Don't know
or not sure

Which of the following activities are
important to improving the security
of the open source software supply
chain? (select all that apply)

In third place for most popular activities around secure software development, we see a tie between
increased automation to reduce attack surfaces and security audits, which were cited by 49% of
organizations. The use of IaC tools can provide a reliable path to increased automation of CI/CD activities.
These tools have proven to be popular across organizations in this survey, and in the right hands, they can
be extremely effective. Security audits are also a valuable way to gauge the current state of security for
some or all of the organization’s applications. However, security audits — as measured through the eyes of
maintainers who participated in the survey — were not valued nearly as highly. While security audits can be
invaluable at comprehensively assessing an organization’s security risks, the organization must be
positioned to act upon the findings of that audit — which seems a bridge too far for organizations without
a security policy. However, note that there were only 72 maintainers participating in this survey, and 78%
of them had not participated in an external security audit. It’s possible that security audits are so rare
that few software developers have experienced them (and thus can only guess about their advantages).

Increased incentives by employers to encourage OSS contributions by employees were identified by 41% of
organizations. While this is a fantastic idea and would tremendously help create a closed-loop environment
for OSS, this point will be discussed in more detail in the next section of this paper.

Figure 15: Activities for improving
the security of open source software

Source: 2022 Open Source Supply Chain Security Survey.

24

The IT industry must
take a more active role
to improve OSS security
and sustainability

Open source software has thrived as an alternative engine of innovation for
organizations and developers alike. The pervasive use of OSS is testimony to the
impact that it has had on the IT industry. However, OSS security and quality
requires a full lifecycle commitment which creates additional investments in
resources, time, and developers when compared to current practice. This section of
the report introduces a variety of OSS security and sustainability challenges and
solicits advice from organizations on how to address them.

Improving the security of OSS development

Organizations and developers are no strangers to the
importance of best practices for secure software
development. The significance of best practices for
OSS development was initially voiced in Figure 15 as
the 2nd most important activity for improving OSS
security. Best practices have been voiced again by 73%
of organizations in Figure 16 as the leading way IT
industry organizations can improve the security of OSS
development. IT industry organizations (such as the
Linux Foundation) have taken this responsibility
seriously and are delivering best practices content
across a variety of channels.

The 2nd leading improvement, identified by 61% of
organizations, is providing tools for analyzing and
remediating security vulnerabilities in OSS
components. This need is being addressed as part of
the OpenSSF’s open source Software Security
Mobilization Plan. This plan was released at the Open
Source Software Security Summit II in Washington DC on
May 12-13, 2022. This plan is available at <https://
openssf.org/oss-security-mobilization-plan/>.

25

73%

61%

53%

47%

3%

43%

6% 6%

Define best
practices for secure
software
development

Provide tools for
analyzing and
remediating
security
vulnerabilities of the
top 500 open source
components

Provide more
training in secure
and memory safe
programming for
the broader open
source software
community

Provide funds to
support
maintainers for
analyzing and
remediating
security
vulnerabilities of
the top 500 open
source code
components

More formal processes
for evaluating the
security of incoming
software

Provide funds to
more nascent
projects that
show significant
potential

Other (please
specify)

Don't know or
not sure

What are some of the ways that IT Industry Organizations could improve the
security of developing open source software? (select all that apply)

The 3rd ranked improvement identified in Figure
16 by 53% of organizations is to provide more
training in secure and memory safe programming.
Sadly, many software developers have not been
trained on how to develop secure software. As
noted earlier, there are some courses available
today, including one from the OpenSSF, and there
is interest in expanding these courses further.
Virtually all languages are memory safe by
default. C, C++, and Assembly are the only
remaining languages in common use that are not
memory safe by default. Training courses and
books on alternative programming languages are
readily available.

Source: 2022 Open Source Supply Chain Security Survey.

Figure 16: How organizations can improve the security of OSS development

26

What are the three most important ways that open source project
resourcing can be improved? (select all that apply)

63%

51% 51%

44%

3%

36%

6%

Employers
should provide
or increase an
incentive to
contributors for
meaningful
contribution to
open source
projects
including
dependencies

Industry
adoption of
standards for
interoperability
across tools to
make it less
painful for
developers to
build pipelines
and workflows

Cloud service
providers
should sponsor
free or deeply
discounted
tools and
services to
open source
projects

Employers
should give
contributors
access to
security
analysis tools
they're used to
using at work

Employers should
contribute to a
Linux Foundation
fund that redirects
100% of this fund
to open source
projects of merit

Other Don't know
or not sure

Improving open source software resourcing

OSS resourcing is a growing challenge because of the need to
improve the security and quality of OSS components. The Open Source
Software Security Mobilization Plan, put forward by the OpenSSF,
aims to address the following

 Secure OSS production. Focus on preventing security defects and
vulnerabilities in code and open source packages in the first
place

 Improving vulnerability discovery and remediation. Improving the
process for finding defects and fixing them

 Shorten ecosystem patching response time. Shorten the response
time for distributing and implementing fixes.

This plan is estimated to cost in the vicinity of $70 million to
$110 million per year and is designed to provide a blueprint and
services including education, training, tools, and processes to
secure the top OSS projects. While this plan will provide a useful
model for OSS projects in general, there are millions of ongoing
OSS projects. How will funding for many of these projects be
accomplished?

Figure 17 addresses this dilemma. The leading response shared by
63% of organizations suggests that employers should provide or
increase an incentive to contributors of meaningful OSS projects.
If end-user organizations elected to ”give back” to the OSS
communities they depend on, it would attract more contributors and
improve the security and quality of those OSS components.

Figure 17: The most important ways to improve OSS resourcing

Source: 2022 Open Source Supply Chain Security Survey.

27

Industry adoption of standards for interoperability across tools
and discounted resources provided by CSPs (Cloud Service Providers)
to OSS projects resonate across 51% of organizations in this study.
Interoperability concerns were frustrating and are a characteristic
of immature markets. The fragmented nature of today’s software
security markets suggests that consolidation will occur and help
address this problem although the timeframe is unknown.

The concept of cloud service providers providing support for secure
OSS development is intriguing. Having access to a portfolio of
tools adept at secure software development at deeply discounted
prices would be a win for developers. It could also be a win for
CSPs as an on-ramp to more conventionally priced runtime services.
However, whether this idea has been vetted with CSPs is unknown as
is their overall receptivity to the idea.

44% of developers at organizations also embrace having their
employer establish a sandbox for developing OSS projects using the
same tools they are already familiar with. This is also an
intriguing idea and would qualify as yet another perk provided by
an employer to their employees who contribute to material OSS
projects.

Although the ideas presented as responses in Figure 17 are
speculative, they all reflect the realization that secure OSS
development will require additional investment which needs to be
provided by the community that benefits from the value derived from
OSS.

Snyk - Broken Containers

Vulnerability management is complicated enough to start with, but
the advent of containers, virtual machine images, IaC, and
microservices complicate it even further. While many organizations
are still improving how to handle vulnerabilities in their own
code, and starting to examine direct and transitive dependencies in
depth, fixing the vulnerabilities introduced by containers is still
a struggle. Container images (among other constructs) are often
“black boxes” that organizations do not examine further.

Returning to our examples of recent vulnerabilities, as of the time
of this writing, only 8% of container projects with Spring
Framework dependencies have fully remediated the Spring4Shell
vulnerability. In contrast, Log4Shell has been resolved in nearly
25% of all containers.

Because containers can be ephemeral, the act of creating and
destroying containers provides an opportunity for implementing
updates that could occur rapidly and significantly improve existing
vulnerability dynamics. Changing the code in one container
configuration could potentially result in hundreds of updated
containers. The flip side is that one container configuration
forgotten or missed can also easily result in the same number
continuing to be vulnerable. This later challenge is one readily
resolved through the use of SBOMs.

28

64%

58%
55%

36%

3%

26%

6%

Encourage
retiring
maintainers to
request and
add new
maintainers to
the project

Encourage
retiring
maintainers to
clearly identify
on the repo that
the software is
no longer being
maintained

Look for ways
to transition
the project to
an
independent
foundation

Look for ways
to transition
the project to
a large scale
user of the
project

Look for ways
to raise
funding to
encourage
the current
maintainer to
continue

Other Don't know
or not sure

Improving OSS sustainability

OSS sustainability is an important topic for anyone who
depends on OSS. For small OSS projects maintained by a single
person, challenges exist. Sustainability requires continuity
over time. To achieve this requires the successful ability to
transfer maintainer responsibilities to additional
maintainers.

Figure 18 helps prioritize key activities to help address OSS
sustainability. Across organizations, 64% report that
maintainers should plan for their own retirement by bringing
new maintainers into the project. This is the preferred path
forward but requires attention to nontechnical activities
focused on process and communication. Adding a second
maintainer to a project and transferring responsibility from
the original maintainer are likely to be some of the most
difficult activities a project must overcome.

Recognizing the challenges of transferring project
responsibility, 58% of organizations believe that if a project
reaches its end of life the retiring maintainer should clearly
identify on the repo that the software is no longer being
maintained.

An alternative path for transferring maintainership
responsibility is to find a foundation or IT industry
organization that will create a new home for the project. 55%
of organizations endorsed this path forward although it may
prove to be nearly as complex as independently finding a new
maintainer.

Figure 18: Improving OSS sustainability

How should open source software sustainability be addressed if the
maintainer(s) on a project decide to retire? (select all that apply)

Source: 2022 Open Source Supply Chain Security Survey.

29

Conclusions and
recommendations

Using additional security tools is a leading way to improve
OSS security

There are at least 10 tool categories that have a focus on
addressing OSS security. Organizations on average use 2.8 security
tool categories among the survey options. SCA and SAST tools are
the leading tools used to address OSS security among those options
(Figure 14). The use of IaC tools (which indirectly address
security) and web application scanners (part of the DAST category)
round out the portfolio that many organizations use.

The security tools market has numerous tool categories because the
overall domain extends from source code management through build,
package, delivery, and deployment. This is basically the entire
software lifecycle. Software security must be managed across each
step and accomplishing all of this with just two or three tool
categories is not feasible. Therefore, organizations should take a
closer look at adjacent and complementary security tools markets
and determine where incremental tools can add the most value.

Figure 14 also shows that organizations with an OSS security
policy have a higher frequency of security tool use than those
organizations without an OSS security policy. This same dynamic is
in place based on organizational size where large organizations
have a higher frequency of security tool use than small
organizations. Security tool use is therefore one of the most
obvious and powerful ways to improve your OSS security posture.

Too many organizations are not prepared to address OSS security
needs

Across the 500+ organizations participating in this OpenSSF survey, at
least 34% did not have an OSS security policy in place (Figure 1). The
percentage of organizations without a security policy is likely to be
around 40% after prorating those respondents who didn’t know the status
of an OSS security policy for their employer. OSS use is pervasive
across end-user organizations and IT vendors/service providers (who
somewhat evenly comprise our sample) and the 60/40 yes/no split on
having an OSS security policy persists across virtually all 22
industries represented in our sample. This indicates that not having an
OSS security policy is not specific to certain industries or
organization types but instead is widely found across business
environments.

Small organizations must prioritize developing an OSS security
policy

In the wake of numerous high-profile attacks across the software supply
chain over the last several years, this finding is disappointing. Every
organization needs to have a CISO and OSPO (open source Program Office)
or a person or persons vested with key CISO and OSPO responsibilities.
We recognize that small organizations with less than 500 people were
significantly more likely to not have an OSS security policy (Figure
2). Small organizations, therefore, need to prioritize and limit their
CISO and OSPO agenda so it can be achievable with a partial FTE. Once
key CISO and OSPO capabilities are resident in the organization an OSS
security policy will follow.

30

Collaborate with vendors to create more intelligent security
tools

Adding greater intelligence to existing software security tools is
viewed by organizations as one of the most important ways to
improve OSS security across the supply chain (Figure 15). While
tool vendors may see this more as business as usual, tool users see
this as a critical requirement to empower existing resources.
Because most end-user organizations are resource constrained in IT,
a critical objective is to find ways that existing developers can
be more productive without adding to their workload. Increased tool
intelligence and automation are examples of how to improve software
security in a way nearly transparent to developers.

Implementing best practices for secure software development
is the other leading way to improve OSS security

Understanding best practices for secure software development is
identified repeatedly as the leading or a leading way to improve
the security of the open source software supply chain (Figures 15
and 16). A primary reason why there is so much interest in best
practices is that developing secure software encompasses the entire
breadth of the software lifecycle. At each waypoint, from source
code management, build services, and packaging to software delivery
and deployment there are numerous best practices that need to be
followed. This includes literally hundreds of best practices. The
Linux Foundation has developed an outstanding free course and
certification on developing secure software (LFD121) which can be
found on OpenSSF.org.

Use automation to reduce your attack surface

Infrastructure as Code (IaC) tools provide a way to script manual
activities so that they can be automated (Figure 15). Reducing or
eliminating manual command line-driven CI/CD activities provides fewer
ways for developers to skirt policy, bend rules, make mistakes, and expose
CI/CD activities to external threats. Use of IaC tools and IaC scanners
provides organizations with a way to streamline and automate CI/CD
activities while simultaneously eliminating some threat vectors. While
there will always be use cases for manual intervention by developers,
minimizing the need for this is a best practice.

Consumers of open source software should give back to the
Communities that support them

The introduction to this paper mentioned that open source software is at a
crossroads. Those open source projects that experience significant growth
must evolve from their modest and somewhat informal origin to address a
more demanding and security conscious community of users. This transition
does not come easily because it requires increased resources, time,
processes, and security. The use of open source software has often been a
one-way street where users see significant benefit with minimal cost or
investment. In order for larger open source projects to meet user
expectations it will be important for organizations to give back and close
the loop to improve open source software sustainability. Employers need to
provide additional incentives to employees who have material maintainer or
core contributor open source roles or responsibilities. This would also
serve to encourage a higher level of participation by developers in open
source projects to ensure the flow of new talent.

31

Methodology

The objective of this research was to understand the following

 The current state of open source software securit

 Security practices across the open source software supply chai

 Secure development practice

 How the security and sustainability of open source software can
be improved

This research project was initiated in 2022 Q1 at the request of
the OpenSSF. The primary research vehicle would be a survey of OSS
developers, maintainers, core contributors, and security
professionals. However, the research was preceded by interviews
with fifteen OSS maintainers and security subject matter experts.
These qualitative interviews were performed to ensure that the
survey included key security topics important to the OSS community.

Interviews occurred in March 2022 and the survey was fielded in
April 2022. Data was analyzed and this report was drafted as well
as peer reviewed in May 2022.

All Figures in this survey include results that are rounded to
the nearest whole integer percent value. Therefore, totals for
segmentation data may not always add to 100%.

This was a long survey with an average time to complete of 20+
minutes. The completion rate for this survey was under 50%. This
explains why there is some variation in the sample size for the
above segmentation variables.

Comprehensive screening criteria were to ensure respondents would
have a high probability of being able to answer all survey
questions. Screening criteria included involvement in open source
software, experience in the development or use of open source
software, employed or looking for employment, and respondents who
self-identify as a real person.

The qualitative dimension of this project included in-depth
interviews with selected individuals across industries and in
federal cybersecurity policy development or involvement with
maintaining open source software.

32

About the Authors

Stephen Hendrick is Vice President of research at the Linux
Foundation where he is the principal investigator on a variety of
research projects core to the Linux Foundation’s understanding of how
open source software is an engine of innovation for producers and
consumers of information technology. Steve specializes in primary
research techniques developed over 30 years as a software industry
analyst. Steve is a subject matter expert in application development
and deployment topics including DevOps, application management, and
decision analytics. Steve brings experience in a variety of
quantitative and qualitative research techniques that enable deep
insight into market dynamics and has pioneered research across many
application development and deployment domains. Steve has authored
over 1,000 publications and provided market guidance through
syndicated research and custom consulting to the world’s leading
software vendors and high-profile startups.

Stephen Hendrick Martin Mckeay

Martin Mckeay is Snyk’s Senior Editorial Research Manager,
where he works with teams across the company to build
reports that increase the knowledge base of security
professionals and developers. With over twenty years as a
security professional, Martin started his career in help
desk operations, continuously building to more complex and
diverse roles over the years. Over the last seven years,
Martin has developed the skills to turn data into
intelligence and translate ‘geek speak’ into language
understandable by mere mortals.

33

Acknowledgements

This document was authored with the support and collaboration of the
following individuals and organizations: Stephen Augustus (Cisco),
Brian Behlendorf (Linux Foundation), Hilary Carter (Linux Foundation),
Randall Degges (Snyk), Brian Demers, Michael Dolan (Linux Foundation),
Kim Lewandowski (Chainguard), Oleg Nenashev (Dynatrace), Mike
Milinkovich (Eclipse Foundation), Megan Moore (Synk), Nick O’Leary
(FlowForge), Christina Oliviero (Linux Foundation), Ashwin Ramaswami
(Plaintext Group), Clark Roundy (Eclipse Foundation), Jed Salazar
(Chainguard), Melissa Schmidt (Linux Foundation), Robert Scholte
(Apache), Micah Silverman (Snyk), Daniel Stenberg (WolfSSL), Kate
Stewart (Linux Foundation), Liran Tal (Synk), Adolfo Garcia Veytia
(Chainguard), Derek Weeks (Linux Foundation), David A. Wheeler (Linux
Foundation), Sarah Wills (Snyk).

Disclaimer

This report is provided “as is.” The Linux Foundation and its authors,
contributors, and sponsors expressly disclaim any warranties (express,
implied, or otherwise), including implied warranties of
merchantability, noninfringement, fitness for a particular purpose, or
title, related to this report. In no event will the Linux Foundation
and its authors, contributors, and sponsors be liable to any other
party for lost profits or any form of indirect, special, incidental,
or consequential damages of any character from any causes of action of
any kind with respect to this report, whether based on breach of
contract, tort (including negligence), or otherwise, and whether they
have been advised of the possibility of such damage. Sponsorship of
the creation of this report does not constitute an endorsement of its
findings by any of its sponsors.

Founded in 2021, Linux Foundation Research explores the growing

scale of open source collaboration, providing insight into

emerging technology trends, best practices, and the global

impact of open source projects. Through leveraging project

databases and networks, and a commitment to best practices in

quantitative and qualitative methodologies, Linux Foundation

Research is creating the go-to library for open source insights

for the benefit of organizations the world over.

Snyk is a developer-first security company that helps

software-driven businesses develop fast and build

securely. Snyk provides a platform to secure all of the

critical components of today’s cloud native application

development. Snyk is securing the industry leaders such as

Google, Salesforce, Asos, BBC, and Asurion. For more

information or to get started with Snyk for free, visit

https://snyk.io

Copyright 2022 The Linux Foundation

This report is licensed under the Creative Commons Attribution-

NoDerivatives 4.0 International Public License.

To reference this work, please cite as follows: Stephen Hendrick

and Martin Mckeay, “Addressing Cybersecurity Challenges in open

source Software,” foreword by Brian Behlendorf, Linux Foundation

and Snyk, June 2022

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

